Navigation is influenced by body-based self-motion cues that are integrated over time, in a process known as path integration, as well as by environmental cues such as landmarks and room shape. In two experiments we explored whether humans combine path integration and environmental cues (Exp. 1: room shape; Exp. 2: room shape, single landmark, and multiple landmarks) to reduce response variability when returning to a previously visited location. Participants walked an outbound path in an immersive virtual environment before attempting to return to the path origin. Path integration and an environmental cue were both available during the outbound path, but experimental manipulations created single- and dual-cue conditions during the return path. The response variance when returning to the path origin was reduced when both cues were available, consistent with optimal integration predicted on the basis of Bayesian principles. The findings indicate that humans optimally integrate multiple spatial cues during navigation. Additionally, a large (but not a small) cue conflict caused participants to assign a higher weight to path integration than to environmental cues, despite the relatively greater precision afforded by the environmental cues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13421-017-0747-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!