Novel benzodithiophene-based polymer acceptors for efficient organic solar cells.

Phys Chem Chem Phys

Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Published: August 2017

All polymer organic solar cells afford unique potentials due to the tunable chemical and electronic properties of both polymer donors and polymer acceptors. Compared with the rapid development of polymer donors, the development of polymer acceptors lags far behind. To seek high-performance polymer acceptors used in organic solar cells, based on the experimentally reported D-A polymer acceptor (NDI2OD-T2) (P1), a series of novel acceptors, designated as (BDTNDI2OD-T2)(P2), (BDTNDTI)(P3), (BDTNDI2OD-Tz2)(P4), and (BDTNDTzI)(P5), were designed by introduction of a benzodithiophene (BDT) unit and the nitrogen atom in the bridged thiophene ring. The density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods were applied to study the effect of the BDT unit and the nitrogen atom on the geometrical, optical, electronic, and charge transport properties. The obtained results show that incorporation of the electron-donating BDT unit into P1 and the replacement of a carbon atom by the nitrogen atom in the bridged thiophene ring are effective strategies to lower the lowest unoccupied molecular orbital (LUMO) energy and exciton binding energy, and enhance light-absorbing capacity and electron mobility. Moreover, among the investigated molecules, P2 and P5 exhibit stronger and broader light absorption, higher light absorption efficiency and exciton separation ability as well as electron mobility; therefore they are recommended as promising polymer acceptors for future high-efficiency organic solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp04372dDOI Listing

Publication Analysis

Top Keywords

polymer acceptors
20
organic solar
16
solar cells
16
bdt unit
12
nitrogen atom
12
polymer
9
polymer donors
8
development polymer
8
unit nitrogen
8
atom bridged
8

Similar Publications

Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation.

Nat Mater

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.

Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.

View Article and Find Full Text PDF

Visible Light-Responsive Composition-Dependent Morphology and Cargo Release in Mixed Micelles of Dendron Amphiphiles.

Langmuir

January 2025

Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

2,2-Bis-(methylol)propionic acid-based second-generation polyester dendron amphiphile (T-D) containing visible light-responsive donor-acceptor Stenhouse adduct (DASA) as hydrophobic tails is synthesized. Micelles of T-D amphiphile and its mixed micelles of varying compositions with nonresponsive dendron amphiphile containing lauryl groups are prepared in aqueous solution. In transmission electron microscopy and atomic force microscopy analyses, T-D amphiphiles show rice grain-like ellipsoidal micelles as the predominant morphology.

View Article and Find Full Text PDF

Conjugated polymer donors have always been one of the important components of organic solar cells (OSCs), particularly those featuring simple synthetic routes, proper energy levels, and appropriate aggregation behavior. In this work, we employed a nonfused electron-deficient building block, dicyanobithiophene (2CT), for constructing high-performance donors. Combining this with side-chain engineering, two novel halogen-free polymer donors, PB2CT-BO and PB2CT-HD, were reported.

View Article and Find Full Text PDF

The photovoltaic performance of organic solar cells (OSCs) has reached the threshold for industrial applications, but the cost of most high-performance organic photovoltaic molecules is too high to meet the needs of industrialization. Herein, two low-cost thiophene--quinoxaline (TQ)-based polymers, PTQ16-10 and PTQ16-20, are designed and synthesized by incorporating a benzotriazole (BTA) unit into the PTQ10 backbone, with the consideration of expanding the chemical modifiability of PTQ10 and thus optimizing its photovoltaic properties. The incorporation of BTA induces improved light absorption, up-shifted energy levels, more orderly molecular π-π packing, enhanced molecular crystallinity, and better charge transport capacity of the two polymers.

View Article and Find Full Text PDF

This study proposes a green and efficient atom- and step-economical method for converting hazardous CS to dithiocarbamate derivatives under visible light irradiation and catalyst-free conditions. By the construction of novel C-S and C-N bonds, a series of β-dicarbonyl compounds and amines are incorporated into the products. Under light, CS and amine first form bis(dialkylaminethiocarbonyl)disulfides, which then react with KCO-activated β-dicarbonyl compounds to form electron donor-acceptor (EDA) complexes and subsequently generate the target products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!