Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present study documents a simultaneous production and comparative assessment of extracted vasicinone from in vivo (leaves and stems) and in vitro (leaves, stems and calli) plant parts of Nees, a well-known medicinal plant. High-performance thin layer chromatography (HPTLC) analysis of the above-mentioned plant parts, collected at their 60-day-old growth stage, was performed via methanolic extraction and with the aid of toluene:butanol:butyl acetate (9:0.5:0.5; ) solvent system. The method was validated with the help of aluminium sheet precoated with silica gel 60 F TLC plates, following the ICH guidelines in order to maintain accuracy, precision and repeatability. Correlation coefficient, limit of detection and limit of quantification values were found to be reasonable. The outcome revealed a linearity that ranged between 2 and 6 µg/spot. During the comparison of estimated vasicinone quantity from in vivo and in vitro plant parts, it was evident that in vitro samples produced relatively higher vasicinone than that of the in vivo counterparts. Maximum vasicinone (6.402 ± 0.010% of dry weight) production was quantified from in vitro leaves followed by calli (5.222 ± 0.092% of dry weight) and in vitro stems (2.007 ± 0.041% of dry weight). On the other hand, in vivo leaves and stems produced comparatively lower quantities of vasicinone (2.412 ± 0.139 and 1.933 ± 0.046% of dry weight, respectively) suggesting the in vitro clonal propagation as a superior approach in comparison to in vivo propagation. Nonetheless, simultaneous production from both the sources (in vivo and in vitro plant parts) provides a new avenue for augmented production of vasicinone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559387 | PMC |
http://dx.doi.org/10.1007/s13205-017-0882-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!