A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Concurrent production and relative quantification of vasicinone from in vivo and in vitro plant parts of Malabar nut ( Nees). | LitMetric

The present study documents a simultaneous production and comparative assessment of extracted vasicinone from in vivo (leaves and stems) and in vitro (leaves, stems and calli) plant parts of Nees, a well-known medicinal plant. High-performance thin layer chromatography (HPTLC) analysis of the above-mentioned plant parts, collected at their 60-day-old growth stage, was performed via methanolic extraction and with the aid of toluene:butanol:butyl acetate (9:0.5:0.5; ) solvent system. The method was validated with the help of aluminium sheet precoated with silica gel 60 F TLC plates, following the ICH guidelines in order to maintain accuracy, precision and repeatability. Correlation coefficient, limit of detection and limit of quantification values were found to be reasonable. The outcome revealed a linearity that ranged between 2 and 6 µg/spot. During the comparison of estimated vasicinone quantity from in vivo and in vitro plant parts, it was evident that in vitro samples produced relatively higher vasicinone than that of the in vivo counterparts. Maximum vasicinone (6.402 ± 0.010% of dry weight) production was quantified from in vitro leaves followed by calli (5.222 ± 0.092% of dry weight) and in vitro stems (2.007 ± 0.041% of dry weight). On the other hand, in vivo leaves and stems produced comparatively lower quantities of vasicinone (2.412 ± 0.139 and 1.933 ± 0.046% of dry weight, respectively) suggesting the in vitro clonal propagation as a superior approach in comparison to in vivo propagation. Nonetheless, simultaneous production from both the sources (in vivo and in vitro plant parts) provides a new avenue for augmented production of vasicinone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559387PMC
http://dx.doi.org/10.1007/s13205-017-0882-7DOI Listing

Publication Analysis

Top Keywords

plant parts
20
dry weight
16
vasicinone vivo
12
vivo vitro
12
vitro plant
12
leaves stems
12
vitro
8
simultaneous production
8
vivo leaves
8
vitro leaves
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!