Worldwide occurrences of honey bee colony losses have raised concerns about bee health and the sustainability of pollination-dependent crops. While multiple causal factors have been identified, seed coating with insecticides of the neonicotinoid family has been the focus of much discussion and research. Nonetheless, few studies have investigated the impacts of these insecticides under field conditions or in commercial beekeeping operations. Given that corn-seed coating constitutes the largest single use of neonicotinoid, our study compared honey bee mortality from commercial apiaries located in two different agricultural settings, i.e. corn-dominated areas and corn-free environments, during the corn planting season. Data was collected in 2012 and 2013 from 26 bee yards. Dead honey bees from five hives in each apiary were counted and collected, and samples were analyzed using a multi-residue LC-MS/MS method. Long-term effects on colony development were simulated based on a honey bee population dynamic model. Mortality survey showed that colonies located in a corn-dominated area had daily mortality counts 3.51 times those of colonies from corn crop-free sites. Chemical analyses revealed that honey bees were exposed to various agricultural pesticides during the corn planting season, but were primarily subjected to neonicotinoid compounds (54% of analysed samples contained clothianidin, and 31% contained both clothianidin and thiamethoxam). Performance development simulations performed on hive populations' show that increased mortality during the corn planting season sets back colony development and bears contributions to collapse risk but, most of all, reduces the effectiveness and value of colonies for pollination services. Our results also have implications for the numerous large-scale and worldwide-cultivated crops that currently rely on pre-emptive use of neonicotinoid seed treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560231 | PMC |
http://dx.doi.org/10.7717/peerj.3670 | DOI Listing |
Obes Rev
January 2025
Inserm UMR 1256 Nutrition-Genetics-Environmental Risk Exposure (N-G-ERE), University of Lorraine, Nancy, France.
Limited literature addresses the association between pollution, stress, and obesity, and knowledge synthesis on the associations between these three topics has yet to be made. Two reviewers independently conducted a systematic review of MEDLINE, Embase, and Web of Science Core Collection databases to identify studies dealing with the effects of semi-volatile organic compounds, pesticides, conservatives, and heavy metals on the psychosocial stress response and adiposity in humans, animals, and cells. The quality of papers and risk assessment were evaluated with ToxRTool, BEES-C instrument score, SYRCLE's risk of bias tool, and CAMARADES checklist.
View Article and Find Full Text PDFVet Microbiol
January 2025
Division of Microbiology, Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31 Street, Wrocław 50-375, Poland. Electronic address:
The prevalence of obesity within the human population is escalating globally yearly. Obesity constitutes a complex ailment with diverse etiological factors. Recently, the infectious side of obesity aetiology, implicating pathogens such as human adenovirus 36 (HAdV-D36), has gained attention.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
Honeybees, essential pollinators for maintaining biodiversity, are experiencing a sharp population decline, which has become a pressing environmental concern. Among the factors implicated in this decline, neonicotinoid pesticides, particularly those belonging to the fourth generation, have been the focus of extensive scrutiny due to their potential risks to honeybees. This study investigates the molecular basis of these risks by examining the binding interactions between Apis mellifera L.
View Article and Find Full Text PDFConserv Biol
January 2025
Humanities and Social Sciences Department, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India.
Indigenous ecological knowledge (IEK) has proven effective in environmental governance, forest management, and sustainable development, yet it is threatened by globalization and rapid social-ecological changes. In southern India, I investigated the engagement of the Kattunaicken community with the forest, particularly through honey collection, to explore the connection between their Indigenous epistemological identity and their role in caring for the forest and its inhabitants. I conducted 48 interviews and accompanied 11 forest walks as part of walking ethnography with male community members, who are primarily involved in honey collection within the Wayanad district of Kerala.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America.
Disruption of host-associated microbial communities can have detrimental impacts on host health. However, the capacity of individual host-associated microbial communities to resist disturbance has not been well defined. Using a novel fecal sampling method for honey bees (Apis mellifera), we examined the resistance of the honey bee gut microbiome to disruption from a low dose of the antibiotic, tetracycline (4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!