From virus isolation to metagenome generation for investigating viral diversity in deep-sea sediments.

Sci Rep

Department of Environmental and Life Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.

Published: August 2017

Viruses are the most abundant and, likely, one of the most diverse biological components in the oceans. By infecting their hosts, they play key roles in biogeochemical cycles and ecosystem functioning at a global scale. The ocean interior hosts most of the microbial life, and, despite deep-sea sediments represent the main repository of this component and the largest biome on Earth, viral diversity in these ecosystems remains almost completely unknown. We compared a physical-chemical procedure and a previously published sediment washing-based procedure for isolating viruses from benthic deep-sea ecosystems to generate viromes through high-throughput sequencing. The procedure based on a physical-chemical dislodgment of viral particles from the sediments, followed by vacuum filtration was much more efficient allowing us to recover >85% of the extractable viruses. By using this procedure, a high fraction of viral DNA was recovered and new viromes from different benthic deep-sea sites were generated. Such viromes were diversified in terms of both viral families and putative functions. Overall, the results presented here provide new insights for evaluating benthic deep-sea viral diversity through metagenomic analyses, and reveal that deep-sea sediments are a hot spot of novel viral genotypes and functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566222PMC
http://dx.doi.org/10.1038/s41598-017-08783-4DOI Listing

Publication Analysis

Top Keywords

viral diversity
12
deep-sea sediments
12
benthic deep-sea
12
viral
7
deep-sea
6
virus isolation
4
isolation metagenome
4
metagenome generation
4
generation investigating
4
investigating viral
4

Similar Publications

The HoloFood project used a hologenomic approach to understand the impact of host-microbiota interactions on salmon and chicken production by analysing multiomic data, phenotypic characteristics, and associated metadata in response to novel feeds. The project's raw data, derived analyses, and metadata are deposited in public, open archives (BioSamples, European Nucleotide Archive, MetaboLights, and MGnify), so making use of these diverse data types may require access to multiple resources. This is especially complex where analysis pipelines produce derived outputs such as functional profiles or genome catalogues.

View Article and Find Full Text PDF

Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections.

View Article and Find Full Text PDF

The size of viral genomes is limited, thus the majority of encoded proteins possess multiple functions. The main function of tobamoviral movement protein (MP) is to perform plasmodesmata gating and mediate intercellular transport of the viral RNA. MP is a remarkable example of a protein that, in addition to the initially discovered and most obvious function, carries out numerous activities that are important both for the manifestation of its key function and for successful and productive infection in general.

View Article and Find Full Text PDF

Elucidation of Factors Affecting the Age-Dependent Cancer Occurrence Rates.

Int J Mol Sci

December 2024

Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.

Cancer occurrence rates exhibit diverse age-related patterns, and understanding them may shed new and important light on the drivers of cancer evolution. This study systematically analyzes the age-dependent occurrence rates of 23 carcinoma types, focusing on their age-dependent distribution patterns, the determinants of peak occurrence ages, and the significant difference between the two genders. According to the SEER reports, these cancer types have two types of age-dependent occurrence rate (ADOR) distributions, with most having a unimodal distribution and a few having a bimodal distribution.

View Article and Find Full Text PDF

Engineered Phage Enables Efficient Control of Gene Expression upon Infection of the Host Cell.

Int J Mol Sci

December 2024

CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Recently, we developed a spatial phage-assisted continuous evolution (SPACE) system. This system utilizes chemotaxis coupled with the growth of motile bacteria during their spatial range expansion in soft agar to provide fresh host cells for iterative phage infection and selection pressure for preserving evolved genes of interest carried by phage mutants. Controllable mutagenesis activated only in a subpopulation of the migrating cells is essential in this system to efficiently generate mutated progeny phages from which desired individuals are selected during the directed evolution process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!