Broadly neutralizing antibodies (bnAbs) against HIV-1 protect from infection and reduce viral load upon therapeutic applications. However no vaccine was able so far to induce bnAbs demanding their expensive biotechnological production. For clinical applications, nanobodies (VHH) derived from heavy chain only antibodies from Camelidae, may be better suited due to their small size, high solubility/stability and extensive homology to human VH3 genes. Here we selected broadly neutralizing nanobodies by phage display after immunization of dromedaries with different soluble trimeric envelope proteins derived from HIV-1 subtype C. We identified 25 distinct VHH families binding trimeric Env, of which 6 neutralized heterologous primary isolates of various HIV-1 subtypes in a standardized in vitro neutralization assay. The complementary neutralization pattern of two selected VHHs in combination covers 19 out of 21 HIV-1 strains from a standardized panel of epidemiologically relevant HIV-1 subtypes. The CD4 binding site was preferentially targeted by the broadly neutralizing VHHs as determined by competition ELISAs and 3D models of VHH-Env complexes derived from negative stain electron microscopy. The nanobodies identified here are excellent candidates for further preclinical/clinical development for prophylactic and therapeutic applications due to their potency and their complementary neutralization patterns covering the majority of epidemiologically relevant HIV-1 subtypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566552PMC
http://dx.doi.org/10.1038/s41598-017-08273-7DOI Listing

Publication Analysis

Top Keywords

broadly neutralizing
12
hiv-1 subtypes
12
hiv-1 strains
8
therapeutic applications
8
complementary neutralization
8
epidemiologically relevant
8
relevant hiv-1
8
hiv-1
7
selection nanobodies
4
nanobodies broad
4

Similar Publications

Unlabelled: Current influenza vaccination approaches protect against specific viral strains, but do not consistently induce broad and long-lasting protection to the diversity of circulating influenza viruses. Single-cycle viruses delivered to the respiratory tract may offer a promising solution as they safely express a diverse array of viral antigens by undergoing just one round of cell infection in their host and stimulate broadly protective resident memory T-cell responses in the lung. We have previously developed a vaccine candidate called S-FLU, which is limited to a single cycle of infection by inactivation of the hemagglutinin signal sequence and induces a broadly cross-reactive T-cell response and antibodies to neuraminidase, but fails to induce neutralizing antibodies to hemagglutinin after intranasal administration.

View Article and Find Full Text PDF

Towards developing multistrain PEDV vaccines: Integrating basic concepts and SARS-CoV-2 pan-sarbecovirus strategies.

Virology

January 2025

Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. Electronic address:

Porcine epidemic diarrhea virus (PEDV) is a major pathogen impacting the global pig industry, with outbreaks causing significant financial losses. The genetic variability of PEDV has posed challenges for vaccine development since its identification in the 1970s, a problem that intensified with its global emergence in the 2010s. Since current vaccines provide limited cross-protection against PEDV strains, and the development of multistrain PEDV vaccines remains an underexplored area of research, there is an urgent need for improved vaccine solutions.

View Article and Find Full Text PDF

Inactivation of Zika Virus with Hydroxypropyl-Beta-Cyclodextrin.

Vaccines (Basel)

January 2025

Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.

: Zika virus (ZIKV) infection is associated with life-threatening diseases in humans. To date, there are no available FDA-approved therapies or vaccines for the specific treatment or prevention of ZIKV infection. Variation in the ZIKV envelope protein (Env), along with its complex quaternary structure, presents challenges to synthetic approaches for developing an effective vaccine and broadly neutralizing antibodies (bnAbs).

View Article and Find Full Text PDF

Anti-Idiotypic Antibody as a Booster Vaccine Against Respiratory Syncytial Virus.

Vaccines (Basel)

January 2025

Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA.

The respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in children and adults. With nearly everyone infected by the age of five, there is an opportunity to develop booster vaccines that enhance B-cell immunity, promoting potent and broadly neutralizing antibodies. One potential approach involves using anti-idiotypic antibodies (anti-IDs) to mimic specific antigenic sites and enhance preexisting immunity in an epitope-specific manner.

View Article and Find Full Text PDF

The global dissemination of SARS-CoV-2 led to a worldwide pandemic in March 2020. Even after the official downgrading of the COVID-19 pandemic, infection with SARS-CoV-2 variants continues. The rapid development and deployment of SARS-CoV-2 vaccines helped to mitigate the pandemic to a great extent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!