Multiple studies have identified conserved genetic pathways and small molecules associated with extension of lifespan in diverse organisms. However, extending lifespan does not result in concomitant extension in healthspan, defined as the proportion of time that an animal remains healthy and free of age-related infirmities. Rather, mutations that extend lifespan often reduce healthspan and increase frailty. The question arises as to whether factors or mechanisms exist that uncouple these processes and extend healthspan and reduce frailty independent of lifespan. We show that indoles from commensal microbiota extend healthspan of diverse organisms, including , , and mice, but have a negligible effect on maximal lifespan. Effects of indoles on healthspan in worms and flies depend upon the aryl hydrocarbon receptor (AHR), a conserved detector of xenobiotic small molecules. In , indole induces a gene expression profile in aged animals reminiscent of that seen in the young, but which is distinct from that associated with normal aging. Moreover, in older animals, indole induces genes associated with oogenesis and, accordingly, extends fecundity and reproductive span. Together, these data suggest that small molecules related to indole and derived from commensal microbiota act in diverse phyla via conserved molecular pathways to promote healthy aging. These data raise the possibility of developing therapeutics based on microbiota-derived indole or its derivatives to extend healthspan and reduce frailty in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5594673PMC
http://dx.doi.org/10.1073/pnas.1706464114DOI Listing

Publication Analysis

Top Keywords

extend healthspan
16
small molecules
12
indoles commensal
8
diverse organisms
8
healthspan reduce
8
reduce frailty
8
commensal microbiota
8
molecules indole
8
indole induces
8
healthspan
7

Similar Publications

Dietary Restriction and Lipid Metabolism: Unveiling Pathways to Extended Healthspan.

Nutrients

December 2024

Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.

Dietary restriction (DR) has been reported to be a significant intervention that influences lipid metabolism and potentially modulates the aging process in a wide range of organisms. Lipid metabolism plays a pivotal role in the regulation of aging and longevity. In this review, we summarize studies on the significant role of lipid metabolism in aging in relation to DR.

View Article and Find Full Text PDF

Cinnamon, renowned for its aromatic flavor, represents one of the most widely used spices worldwide. Cinnamon is also considered beneficial to human health with therapeutic potential for treating various diseases, ranging from diabetes and cancer to neurodegenerative diseases. However, the mechanisms underlying cinnamon's health benefits remain elusive.

View Article and Find Full Text PDF

The mechanisms underlying the impact of probiotic supplementation on health remain largely elusive. While previous studies primarily focus on the discovery of novel bioactive bacteria and alterations in the microbiome environment to explain potential probiotic effects, our research delves into the role of living Lactiplantibacillus (formerly known as Lactobacillus) and their conditioned media, highlighting that only the former, not dead bacteria, enhance the healthspan of Caenorhabditis elegans (C. elegans).

View Article and Find Full Text PDF

Lithocholic acid binds TULP3 to activate sirtuins and AMPK to slow down ageing.

Nature

December 2024

State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.

Lithocholic acid (LCA) is accumulated in mammals during calorie restriction and it can activate AMP-activated protein kinase (AMPK) to slow down ageing. However, the molecular details of how LCA activates AMPK and induces these biological effects are unclear. Here we show that LCA enhances the activity of sirtuins to deacetylate and subsequently inhibit vacuolar H-ATPase (v-ATPase), which leads to AMPK activation through the lysosomal glucose-sensing pathway.

View Article and Find Full Text PDF

The population of older adults is exponentially expanding. Alongside aging comes the onset of chronic disease, decline of functional capacity, and reduced quality of life. Thus, this population increase will stress the capacity and financial viability of health and long-term care systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!