Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Climate change is altering the seasonal timing of life cycle events in organisms across the planet, but the magnitude of change often varies among taxa [Thackeray SJ, et al. (2016) 535:241-245]. This can cause the temporal relationships among species to change, altering the strength of interaction. A large body of work has explored what happens when coevolved species shift out of sync, but virtually no studies have documented the effects of climate-induced synchronization, which could remove temporal barriers between species and create novel interactions. We explored how a predator, the Kodiak brown bear (), responded to asymmetric phenological shifts between its primary trophic resources, sockeye salmon () and red elderberry (). In years with anomalously high spring air temperatures, elderberry fruited several weeks earlier and became available during the period when salmon spawned in tributary streams. Bears departed salmon spawning streams, where they typically kill 25-75% of the salmon [Quinn TP, Cunningham CJ, Wirsing AJ (2016) 183:415-429], to forage on berries on adjacent hillsides. This prey switching behavior attenuated an iconic predator-prey interaction and likely altered the many ecological functions that result from bears foraging on salmon [Helfield JM, Naiman RJ (2006) 9:167-180]. We document how climate-induced shifts in resource phenology can alter food webs through a mechanism other than trophic mismatch. The current emphasis on singular consumer-resource interactions fails to capture how climate-altered phenologies reschedule resource availability and alter how energy flows through ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5625906 | PMC |
http://dx.doi.org/10.1073/pnas.1705248114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!