The Southern Annular Mode (SAM) is the main driver of climate variability at mid to high latitudes in the Southern Hemisphere, affecting wildfire activity, which in turn pollutes the air and contributes to human health problems and mortality, and potentially provides strong feedback to the climate system through emissions and land cover changes. Here we report the largest Southern Hemisphere network of annually resolved tree ring fire histories, consisting of 1,767 fire-scarred trees from 97 sites (from 22 °S to 54 °S) in southern South America (SAS), to quantify the coupling of SAM and regional wildfire variability using recently created multicentury proxy indices of SAM for the years 1531-2010 AD. We show that at interannual time scales, as well as at multidecadal time scales across 37-54 °S, latitudinal gradient elevated wildfire activity is synchronous with positive phases of the SAM over the years 1665-1995. Positive phases of the SAM are associated primarily with warm conditions in these biomass-rich forests, in which widespread fire activity depends on fuel desiccation. Climate modeling studies indicate that greenhouse gases will force SAM into its positive phase even if stratospheric ozone returns to normal levels, so that climate conditions conducive to widespread fire activity in SAS will continue throughout the 21st century.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5594661PMC
http://dx.doi.org/10.1073/pnas.1705168114DOI Listing

Publication Analysis

Top Keywords

wildfire activity
12
southern annular
8
annular mode
8
southern south
8
south america
8
southern hemisphere
8
sam years
8
time scales
8
positive phases
8
phases sam
8

Similar Publications

Emergency managers' challenges with wildfires and related cascading hazards in California.

J Environ Manage

January 2025

Department of Psychological Science, University of California, Irvine, CA, 92697, USA; Department of Medicine, University of California, Irvine, CA, 92697, USA; Department of Health, Society, and Behavior, University of California, Irvine, CA, 92697, USA; Department of Population Health and Disease Prevention, University of California, Irvine, CA, 92697, USA.

This study investigates the complexities faced by emergency managers in wildfire-prone areas to uncover pressing issues and potential solutions. Four themes are discerned through three focus group discussions with emergency managers from nine counties across California. First, there is unequal access to resources for both risk assessment and response, with counties that have fewer resources facing significant challenges in effectively managing wildfire risks.

View Article and Find Full Text PDF

Relative fire-proneness of land cover types in the Brazilian Atlantic forest.

J Environ Manage

January 2025

CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016, Lisboa, Portugal. Electronic address:

Fires are increasingly affecting tropical biomes, where landscape-fire interactions remain understudied. We investigate the fire-proneness-the likelihood of a land use or land cover (LULC) type burning more or less than expected based on availability-in the Brazilian Atlantic Forest (AF). This biodiversity hotspot is increasingly affected by fires due to human activities and climate change.

View Article and Find Full Text PDF

Background: Prescribed burning is an important fuel management tool to prevent severe wildfires. There is a pressing need to increase its application to reduce dry fuels in the western United States, a region that has experienced many damaging wildfires. Public support for this practice is tempered by concern around smoke impacts and escape risks.

View Article and Find Full Text PDF

Leaf Dry Matter Content Is Phylogenetically Conserved and Related to Environmental Conditions, Especially Wildfire Activity.

Ecol Lett

January 2025

National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China.

Leaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC.

View Article and Find Full Text PDF

The array of wildfire activities instigated by human endeavors has emerged as a significant source of atmospheric pollution, posing considerable risks to both public health and property safety. This study harnesses Sentinel-2 satellite data, employing a variety of methods including spectral index methods, thresholding, and the Random Forest (RF) model for active fire spot detection. The research encompasses a wide range of land cover types across various Chinese regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!