Next generation sequencing (NGS) is widely applied in immunological research, but has yet to become common in antibody epitope mapping. A method utilizing a 12-mer random peptide library expressed in bacteria coupled with magnetic-based cell sorting and NGS correctly identified >75% of epitope residues on the antigens of two monoclonal antibodies (trastuzumab and bevacizumab). PepSurf, a web-based computational method designed for structural epitope mapping was utilized to compare peptides in libraries enriched for monoclonal antibody (mAb) binders to antigen surfaces (HER2 and VEGF-A). Compared to mimotopes recovered from Sanger sequencing of plated colonies from the same sorting protocol, motifs derived from sets of the NGS data improved epitope prediction as defined by sensitivity and precision, from 18% to 82% and 0.27 to 0.51 for trastuzumab and 47% to 76% and 0.19 to 0.27 for bevacizumab. Specificity was similar for Sanger and NGS, 99% and 97% for trastuzumab and 66% and 67% for bevacizumab. These results indicate that combining peptide library screening with NGS yields epitope motifs that can improve prediction of structural epitopes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698135PMC
http://dx.doi.org/10.1016/j.jim.2017.08.004DOI Listing

Publication Analysis

Top Keywords

peptide library
12
structural epitopes
8
random peptide
8
library screening
8
generation sequencing
8
epitope mapping
8
ngs
5
epitope
5
prediction antibody
4
antibody structural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!