Normal endometrial function requires of cell proliferation and differentiation; therefore, disturbances in these processes could lead to pathological entities such as hyperplasia and endometrial adenocarcinoma, where cell proliferation is increased. The development of these pathologies is highly related to alterations in the levels and/or action of sexual steroids. In the present review, it has been analyzed how steroids, particularly estrogens, androgens and progestagens are involved in the etiopathogenesis of hyperplasia and endometrial endometrioid adenocarcinoma. The emphasis is given on pathological and pharmacological conditions that are presented as risk factors for endometrial pathologies, such as obesity, polycystic ovarian syndrome and hormone replacement postmenopausal women therapy, among others. Steroids alterations may promote changes at molecular level that enhance the development of hyperplasia and endometrioid cancer. In fact, there are solid data that indicate that estrogens stimulate cell-proliferation in this tissue; meanwhile, progestagens are able to stop cell proliferation and to increase differentiation. Nevertheless, the role of androgens is less clear, since there is contradictory information. It is most likely that the major contribution of steroids to the development of cell proliferation pathologies in endometria would be in early stages, where there is a high sensitivity to these molecules. This phenomenon is present even in stages previous to the occurrence of hyperplasia, like in the condition of polycystic ovarian syndrome, where the endometria have a greater sensitivity to steroids and high expression of cell cycle molecules. These abnormalities would contribute to the pathogenesis of hyperplasia and then in the progression to endometrioid adenocarcinoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.steroids.2017.08.007 | DOI Listing |
J Pharm Pharmacol
January 2025
Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Objectives: PD15, a novel natural steroidal saponin extracted from the rhizomes of Paris delavayi Franchet, has demonstrated a strong cytotoxic effect against HepG2 and U87MG cells. However, its therapeutic effects on colorectal cancer (CRC) and the underlying molecular mechanisms remain unclear.
Methods: MTT assay, clonogenic assay, Hoechst 33258 staining, flow cytometry, molecular docking, and western blot were used to investigate the mechanism of PD15 in HCT116 cell lines.
J Appl Oral Sci
January 2025
Ningde Hospital Affiliated to Ningde Normal University, Department of Stomatology, Fujian, China.
Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).
Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.
Sci Transl Med
January 2025
Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave.
View Article and Find Full Text PDFSci Adv
January 2025
Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan.
Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!