Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rutin, a natural bioflavonoid, has demonstrated anti-diabetic and anti-oxidative bioactivity. Oxidative stress is a potential therapeutic target for diabetic cardiomyopathy. We investigated whether rutinadministration (60mg/kg body weight) reduces diabetic cardiomyopathy in a diabetic ApoE knock out mouse model. Diabetes was induced in ApoEknockout mice (male, C57BL/6 background) with a high fat diet combined with injection of streptozotocin. Cardiac function was evaluated by echocardiography and cardiac catheter hemodynamic analysis. Cardiac myocardial hypertrophy, myocardial fibrosis, lipid content, myocardial capillary density, and oxidative stress were detected by a series of histopathological analyses, western blotting, and reactive oxygen species analysis. Diabetic mice showed myocardial hypertrophy, lipid accumulation, myocardial fibrosis, elevated collagen content, deteriorating oxidative stress, and left ventricular systolic and diastolic dysfunction. Rutin reversed the myocardial hypertrophy, alleviated extracellular collagen deposition, and lipid accumulation, but increased capillary density in diabetic myocardial tissues. Moreover, rutin substantially improved cardiac function while decreasing blood glucose and lipid content. Therapeutic rutin administration reduced cardiac remodeling and improved myocardial function in diabetic mice, at least in part by reducing oxidative damage and ectopic lipid deposition, inhibiting fibrosis, and promoting angiogenesis. Thus, rutin may represent a potential therapeutic agent for diabetic cardiomyopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2017.08.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!