Lentiviral vectors (LV) represent a key tool for gene and cell therapy applications. The production of these vectors in sufficient quantities for clinical applications remains a hurdle, prompting the field toward developing suspension processes that are conducive to large-scale production. This study describes a LV production strategy using a stable inducible producer cell line. The HEK293 cell line employed grows in suspension, thus offering direct scalability, and produces a green fluorescent protein (GFP)-expressing lentiviral vector in the 10 transduction units (TU)/mL range without optimization. The stable producer cell line, called clone 92, was derived by stable transfection from a packaging cell line with a plasmid encoding the transgene GFP. The packaging cell line expresses all the other necessary components to produce LV upon induction with cumate and doxycycline. First, the study demonstrated that LV production using clone 92 is scalable from 20 mL shake flasks to 3 L bioreactors. Next, two strategies were developed for high-yield LV production in perfusion mode using acoustic cell filter technology in 1-3 L bioreactors. The first approach uses a basal commercial medium and perfusion mode both pre- and post-induction for increasing cell density and LV recovery. The second approach makes use of a fortified medium formulation to achieve target cell density for induction in batch mode, followed by perfusion mode after induction. Using these perfusion-based strategies, the titer was improved to 3.2 × 10 TU/mL. As a result, cumulative functional LV titers were increased by up to 15-fold compared to batch mode, reaching a cumulative total yield of 8 × 10 TU/L of bioreactor culture. This approach is easily amenable to large-scale production and commercial manufacturing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5734158 | PMC |
http://dx.doi.org/10.1089/hgtb.2017.086 | DOI Listing |
Tissue Eng Part A
January 2025
C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA.
Scaffolds made from cartilage extracellular matrix are promising materials for articular cartilage repair, attributed to their intrinsic bioactivity that may promote chondrogenesis. While several cartilage matrix-based scaffolds have supported chondrogenesis and/or , it remains a challenge to balance the biological response (e.g.
View Article and Find Full Text PDFVet Res Commun
January 2025
Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Ghrelin, a peptide hormone primarily produced in the enteroendocrine cells of the gastrointestinal tract, plays a vital role in regulating food intake, and energy balance in avian species. This review examines the complex interactions between ghrelin and the central signaling pathways associated with hunger regulation in birds. In contrast to mammals, where ghrelin typically promotes feeding behavior, its effects in birds appear more nuanced, exhibiting anorexigenic properties under certain conditions.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.
Two features of macrophages make them attractive for targeted transport of drugs: they efficiently take up a broad spectrum of nanoparticles (NPs) and, by sensing cytokine gradients, they are attracted to the sites of infection and inflammation. To expand the potential of macrophages as drug carriers, we investigated whether macrophages could be simultaneously coloaded with different types of nanoparticles, thus equipping individual cells with different functionalities. We used superparamagnetic iron oxide NPs (SPIONs), which produce apoptosis-inducing hyperthermia when exposed to an alternating magnetic field (AMF), and co-loaded them on macrophages together with drug-containing NPs (inorganic-organic nanoparticles (IOH-NPs) or mesoporous silica NPs (MSNs)).
View Article and Find Full Text PDFCardiovasc Res
January 2025
Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
Aims: The gastrointestinal (GI) tract is composed of distinct sub-regions, which exhibit segment-specific differences in microbial colonization and (patho)physiological characteristics. Gut microbes can be collectively considered as an active endocrine organ. Microbes produce metabolites, which can be taken up by the host and can actively communicate with the immune cells in the gut lamina propria with consequences for cardiovascular health.
View Article and Find Full Text PDFClin Cancer Res
January 2025
The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
Background: KRAS inhibitors are revolutionizing the treatment of NSCLC, but clinico-genomic determinants of treatment efficacy warrant continued exploration.
Methods: Patients with advanced KRASG12C-mutant NSCLC treated with adagrasib (KRYSTAL-1-NCT03785249) were included in the analysis. Pre-treatment NGS data were collected per protocol.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!