This work describes an approach for the selection and detection of specific DNA probes related to Toxoplasma gondii, a protozoan parasite responsible for toxoplasmosis. The detection system was developed on graphite carbon electrode modified with poly(3-hydroxybenzoic acid) sensitized with ToxG1 probe. The hybridization of the specific genomic DNA related to T. gondii showed good response by direct detection of guanine residue oxidation using differential pulse voltammetry (DPV). The biosensor was able to distinguish both the complementary and non-complementary targets and detect up to 100ngμL of the T. gondii genomic DNA. The hybridization (ToxG1: T. gondii genomic DNA) was confirmed by optical measurement. Optical assays using gold nanoparticles:ToxG1 probe showed a significant change in the absorbance peak in the presence of the T. gondii genomic DNA according to the electrochemical results. This novel biosensor shows potential as electrochemical transducer and was successfully applied in the biological sample.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2017.07.050DOI Listing

Publication Analysis

Top Keywords

genomic dna
20
gondii genomic
16
toxoplasma gondii
8
gondii
6
dna
6
genomic
5
development direct
4
direct assays
4
assays toxoplasma
4
dna sample
4

Similar Publications

The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.

View Article and Find Full Text PDF

G-quadruplexes (G4s) are four-stranded alternative secondary structures formed by guanine-rich nucleic acids and are prevalent across the human genome. G4s are enzymatically resolved using specialized helicases. Previous studies showed that DEAH-box Helicase 36 (DHX36/G4R1/RHAU), has the highest specificity and affinity for G4 structures.

View Article and Find Full Text PDF

Chromatin remodeling enzymes play a crucial role in the organization of chromatin, enabling both stability and plasticity of genome regulation. These enzymes use a Snf2-type ATPase motor to move nucleosomes, but how they translocate DNA around the histone octamer is unclear. Here we use cryo-EM to visualize the continuous motion of nucleosomal DNA induced by human chromatin remodeler SNF2H, an ISWI family member.

View Article and Find Full Text PDF

Genome organization recapitulates function, yet ciliates like possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, 's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments.

View Article and Find Full Text PDF

To maintain genome stability, proliferating cells must enact a program of telomere maintenance. While most tumors maintain telomeres through the action of telomerase, a subset of tumors utilize a DNA-templated process termed Alternative Lengthening of Telomeres or ALT. ALT is associated with mutations in the ATRX/DAXX/H3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!