Modern plant breeding tends to focus on maximizing yield, with one of the most ubiquitous implementations being shorter-duration crop varieties. It is indisputable that these breeding efforts have resulted in greater yields in ideal circumstances; however, many farmed locations across Africa suffer from one or more conditions that limit the efficacy of modern short-duration hybrids. In view of global change and increased necessity for intensification, perennial grains and long-duration varieties offer a nature-based solution for improving farm productivity and smallholder livelihoods in suboptimal agricultural areas. Specific conditions where perennial grains should be considered include locations where biophysical and social constraints reduce agricultural system efficiency, and where conditions are optimal for crop growth. Using a time-series of remotely-sensed data, we locate the marginal agricultural lands of Africa, identifying suboptimal temperature and precipitation conditions for the dominant crop, i.e., maize, as well as optimal climate conditions for two perennial grains, pigeonpea and sorghum. We propose that perennial grains offer a lower impact, sustainable nature-based solution to this subset of climatic drivers of marginality. Using spatial analytic methods and satellite-derived climate information, we demonstrate the scalability of perennial pigeonpea and sorghum across Africa. As a nature-based solution, we argue that perennial grains offer smallholder farmers of marginal lands a sustainable solution for enhancing resilience and minimizing risk in confronting global change, while mitigating social and edaphic drivers of low and variable production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630205 | PMC |
http://dx.doi.org/10.1016/j.envres.2017.08.011 | DOI Listing |
PLoS One
January 2025
Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America.
Because the use of synthetic agrochemicals is generally not allowed in organic crop production systems, growers rely on natural substances and processes, such as microbial control, to suppress insect pests. Reduced tillage practices are associated with beneficial soil organisms, such as entomopathogenic fungi, that can contribute to the natural control of insect pests. The impacts of management, such as tillage, in a cropping system can affect soil biota in the current season and can also persist over time as legacy effects.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
, valued for its perennial nature, broad adaptability, strong cold tolerance, and high economic value in forage production, plays a crucial role in combating grassland degradation, desertification, and salinization. Using morphological and cytogenetic methods, this study evaluated the cold tolerance, post-harvest regeneration capacity, and perennial characteristics of the accession 20HSC-Z9 in the Harbin region of China from 2020 to 2023. This accession exhibited a germination rate of over 90% and a 100% green-up rate, with purple coleoptiles indicating its strong cold tolerance.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Ellinbank, Victoria 3821, Australia.
This experiment determined the effects of two different starch sources when offered twice a day to cows during the early postpartum period (1 to 23 d postpartum, treatment period) on dry matter intake (DMI), feeding behavior, and milk production. The subsequent effects on milk production in the carryover period (24 to 72 d) where cows received a common diet (grazed perennial ryegrass pasture plus concentrate supplements) were also measured. Thirty-two multiparous dairy cows were offered concentrate feed (8 kg DM/d) containing 5 kg DM of crushed wheat grain or ground corn grain (7 h in vitro starch digestibility of 65.
View Article and Find Full Text PDFPlant J
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
Tiller number is a crucial determinant that significantly influences the productivity and reproductive capacity of forage. The regeneration potential, biomass production, and seed yield of perennial forage species are highly reliant on the development of tillering. Strigolactones (SLs) are recently discovered carotenoid-derived phytohormones that play a crucial role in the regulation of tillering in annual crops.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Division of Plant Improvement and Pest Management, ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India.
Background: In the arid conditions of Thar desert, only the plants which are adapted to the extreme conditions can grow and reproduce. Rangelands are important fodder resources which are needed to be improved for their long-term productivity and sustainability through conservation and utilization of indigenous plant species (Lasiurus sindicus, Cenchrus ciliaris, Cenchrus setigerus, etc.).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!