Integrin is a family of transmembrane heterodimer receptor formed by α and β two subunits, which transduces external signals into cells through reaction with extracellular matrix and is crucial to cell survival, migration, and differentiation. With the deep studies on multipotential differentiation of mesenchymal stem cells (MSCs), researchers found that the differentiation of MSCs depends on integrin related signaling pathways, including MAPK, Wnt and PI3K signaling pathways and so on. However, there are many factors affecting the expression and activation of integrin, such as nano morphology microenvironment, ascorbic acid, bone morphogenetic protein-2, fibronectin, cadherin, fluid shear stress and so on. In this review, we mainly discuss the integrin expression, the promoting effects of integrin on the differentiation of MSCs and their underlying mechanisms.

Download full-text PDF

Source

Publication Analysis

Top Keywords

integrin differentiation
8
differentiation mesenchymal
8
mesenchymal stem
8
differentiation mscs
8
signaling pathways
8
differentiation
5
integrin
5
[effects integrin
4
stem cells]
4
cells] integrin
4

Similar Publications

The role of laminins in cancer pathobiology: a comprehensive review.

J Transl Med

January 2025

Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.

Laminins (LMs) are a family of heterotrimeric glycoproteins that form the structural foundation of basement membranes (BM). By acting as molecular bridges between cells and the extracellular matrix (ECM) through integrins and other surface receptors, they regulate key cellular signals that influence cell behavior and tissue architecture. Despite their physiological importance, our understanding of the role of LMs in cancer pathobiology remains fragmented.

View Article and Find Full Text PDF

Dental pulp regeneration is significantly aided by human dental pulp stem cells (hDPSCs). An increasing number of studies have demonstrated that circular RNAs (circRNAs) are crucial in the multidirectional differentiation of many mesenchymal stem cells, but their specific functions and mechanisms remain unknown. This work aimed at elucidating the molecular mechanism by which hsa_circ_0001599 works in hDPSCs during odontogenic differentiation.

View Article and Find Full Text PDF

Lipid-mediated resolution of inflammation and survival in amyotrophic lateral sclerosis.

Brain Commun

January 2025

Neuromuscular Department, Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.

Neuroinflammation impacts on the progression of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. Specialized pro-resolving mediators trigger the resolution of inflammation. We investigate the specialized pro-resolving mediator blood profile and their receptors' expression in peripheral blood mononuclear cells in relation to survival in ALS.

View Article and Find Full Text PDF

Integrative Quantitative Analysis of Platelet Proteome and Site-Specific Glycoproteome Reveals Diagnostic Potential of Platelet Glycoproteins for Liver Cancer.

Anal Chem

January 2025

Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.

The role of peripheral blood platelets as indicators of cancer progression is increasingly recognized, and the significance of abnormal glycosylation in platelet function and related disorders is gaining attention. However, the potential of platelets as a source of protein site-specific glycosylation for cancer diagnosis remains underexplored. In this study, we proposed a general pipeline that integrates quantitative proteomics with site-specific glycoproteomics, allowing for an in-depth investigation of the platelet glycoproteome.

View Article and Find Full Text PDF

The pericellular function of Fibulin-7 in the adhesion of oligodendrocyte lineage cells to neuronal axons during CNS myelination.

Biochem Biophys Res Commun

January 2025

Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan. Electronic address:

Myelin is an electrical insulator that enables saltatory nerve conduction and is essential for proper functioning of the central nervous system (CNS). It is formed by oligodendrocytes (OLs) in the CNS, and during OL development various molecules, including extracellular matrix (ECM) proteins, regulate OL differentiation and myelination; however, the role of ECM proteins in these processes is not well understood. Our present work is centered on the analyses of the expression and function of fibulin-7 (Fbln7), an ECM protein of the fibulin family, in OL differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!