The purpose of the present study was to investigate the effect of excessive endoplasmic reticulum stress (ERS) on the brain damage in hypoxia hypercapnia induced pulmonary hypertension (HHPH) rats. Forty healthy SPF male SD rats were randomly divided into four groups (n = 10 for each): control group, hypoxia hypercapnia group, ERS pathway agonist tunicamycin (TM) group and ERS pathway inhibitor 4-phenylbutyric acid (4-PBA) group. The rats of control group lived in normal environment, while the rats of other three groups were raised for four weeks in the tank with 8.5%-11% O and 5%-6% CO. TM (0.08 mg/kg, twice a week) and 4-PBA (80 mg/kg, daily) were respectively intraperitoneally injected into the rats of TM and 4-PBA groups, and the hypoxia hypercapnia group was given the same volume of normal saline. The mean pulmonary artery pressure and heart perfusion of the rats were determined and recorded after four-week raising. Then the brain tissue of the rats were quickly taken out for the brain water content measuring and morphological changes observing. The Caspase-3 activity and the apoptotic index of the brain cells were also determined. The protein and mRNA expressions of p-JNK, Caspase-12, CHOP and GRP78 in brain tissues were detected by Western blot and RT-PCR. The results showed that compared with the control group, the mean pulmonary artery pressure, brain water content and brain cells apoptotic index, Caspase-3 activity, the protein and mRNA levels of p-JNK, Caspase-12, CHOP and GRP78 were increased (P < 0.05), and the brain tissues of the rats were obviously damaged in the rats raised in the hypoxia hypercapnia environment; compared with hypoxia hypercapnia group, the mean pulmonary artery pressure, brain water content, brain apoptotic index and Caspase-3 activity, p-JNK, Caspase-12, CHOP, GRP78 protein and mRNA expressions in TM group were increased (P < 0.05), and the brain tissues of the rats were obviously damaged, while all above changes were relieved in 4-PBA group (P < 0.05). These results suggest that excessive ERS may participate in the brain injury induced by HHPH in rats and inhibition of excessive ERS can relieve the brain injury in the rats with HHPH.
Download full-text PDF |
Source |
---|
J Fish Biol
January 2025
Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon (INPA), Manaus, Brazil.
The tambaqui (Colossoma macropomum, G. Cuvier 1818) thrives both in the ion-poor waters of the Amazon and in commercial aquaculture. In both, environmental conditions can be harsh due to low ion levels, occasional high salt challenges (in aquaculture), low pH, extreme PO levels (hypoxia and hyperoxia), high PCO levels (hypercapnia), high ammonia levels (in aquaculture), and high and low temperatures.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2025
School of Sport, Exercise and Rehabilitation Sciences College of Life and Environmental Sciences University of Birmingham Edgbaston, Birmingham, UK.
The respiratory control system exhibits neural plasticity, adjusting future ventilatory responses based on experience. We tested the hypothesis that ventilatory long-term facilitation induced by hypercapnic acute intermittent hypoxia (AIH) at rest enhances subsequent ventilatory responses to steady-state exercise. Fourteen healthy adults (age = 27 ± 5 years; 7 males) participated in the study.
View Article and Find Full Text PDFPhysiol Rep
December 2024
Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
At rest, the menstrual cycle phase impacts ventilation and chemosensitivity. However, during exercise there is inconclusive evidence that the menstrual cycle phase affects ventilation or chemosensitivity. We sought to examine the influence of menstrual phase and hormonal birth control (BC) on chemosensitivity.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2024
Department of rehabilitation Medicine, SuiNing Central Hospital, The Affiliated Hospital of Chongqing Medical University, SuiNing 629000, China. Electronic address:
The parabrachial nucleus (PBN) is responsible for integrating both internal and external sensory information and controlling/regulating a wide range of physiological processes, such as feeding, thermogenesis, nociceptive and pruritic sensations, and respiration. Recently, the PBN has been found to be involved in mediating wakefulness maintenance, sleep-wake transition, exogenous neuromodulation of awakening, and arousal-promoting process triggered by drastic changes in the internal environments, such as hypercapnia, hypoxia, and hypertension. Multiple neural pathways and subpopulations of neurons are responsible for arousal-promoting effects of the PBN.
View Article and Find Full Text PDFFront Med (Lausanne)
November 2024
Department of Trauma Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
Background: Osteoarthritis (OA) is characterized by high morbidity and disability. While studies have demonstrated that OA is correlated with age-related diseases, few have shown the potential relationship between OA and obstructive sleep apnea syndrome (OSAS). OSAS is characterized by intermittent hypoxia and hypercapnia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!