Background: Autism spectrum disorder (ASD) is characterized by impairments in social communication and restricted or repetitive behaviors or interests. ASD is now diagnosed in more than one out of 100 children and is biased towards males by a ratio of at least 4:1. Many possible explanations and potential causative factors have been reported, such as genetics, sex, and environmental factors, although the detailed mechanisms of ASD remain unclear.

Methods: The dams were exposed through oral contraceptives to either vehicle control (VEH) alone, levonorgestrel (LNG) alone, ethinyl estradiol (EE) alone, or a combination of LNG/EE for 21 days during their pregnancy. The subsequent 10-week-old offspring were used for autism-like behavior testing, and the limbic tissues were isolated for analysis. In another experimental group, 8-week-old male offspring were treated by infusion of ERβ overexpression/knockdown lentivirus in the amygdala, and the offspring were analyzed after 2 weeks.

Results: We show that prenatal exposure of either LNG alone or a LNG/EE combination, but not EE alone, results in suppression of ERβ (estrogen receptor β) and its target genes in the amygdala with autism-like behavior in male offspring, while there is a much smaller effect on female offspring. However, we find that there is no effect on the hippocampus and hypothalamus. Further investigation shows that ERβ suppression is due to LNG-mediated altered methylation on the ERβ promoter and results in tissue damage with oxidative stress and the dysfunction of mitochondria and fatty acid metabolism, which subsequently triggers autism-like behavior. Overexpression of ERβ in the amygdala completely restores LNG-induced ERβ suppression and autism-like behaviors in offspring, while ERβ knockdown mimics this effect, indicating that ERβ expression in the amygdala plays an important role in autism-like behavior development.

Conclusions: We conclude that prenatal levonorgestrel exposure induces autism-like behavior in offspring through ERβ suppression in the amygdala. To our knowledge, this is the first time the potential effect of oral contraceptives on the contribution of autism-like behavior in offspring has been discovered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561609PMC
http://dx.doi.org/10.1186/s13229-017-0159-3DOI Listing

Publication Analysis

Top Keywords

autism-like behavior
28
erβ suppression
16
behavior offspring
12
offspring erβ
12
erβ
10
offspring
9
prenatal levonorgestrel
8
levonorgestrel exposure
8
exposure induces
8
autism-like
8

Similar Publications

Introduction: Autism spectrum disorder (ASD) represents a multifaceted set of neurodevelopmental conditions marked by social deficits and repetitive behaviors. Astragaloside IV (ASIV), a natural compound derived from the traditional Chinese herb Astragali Radix, exhibits robust neuroprotective effects. However, whether ASIV can ameliorate behavioral deficits in ASD remains unknown.

View Article and Find Full Text PDF

Integrating 16S rRNA Gene Sequencing and Metabolomics Analysis to Reveal the Mechanism of L-Proline in Preventing Autism-like Behavior in Mice.

Nutrients

January 2025

Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Background/objectives: Autism spectrum disorder (ASD) is characterized by impaired social interaction and repetitive stereotyped behavior. Effective interventions for the core autistic symptoms are currently limited.

Methods: This study employed a valproic acid (VPA)-induced mouse model of ASD to assess the preventative effects of L-proline supplementation on ASD-like behaviors.

View Article and Find Full Text PDF

CTNNB1 syndrome mouse models.

Mamm Genome

January 2025

The Gene Therapy Research Institute, CTNNB1 Foundation, Ljubljana, 1000, Slovenia.

CTNNB1 syndrome is a rare neurodevelopmental disorder, affecting children worldwide with a prevalence of 2.6-3.2 per 100,000 births and often misdiagnosed as cerebral palsy.

View Article and Find Full Text PDF

Cortex-specific Tmem169 Deficiency Induces Defects in Cortical Neuron Development and Autism-like Behaviors in Mice.

J Neurosci

January 2025

Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China, 350122.

The development of the nervous system is a complex process, with many challenging scientific questions yet to be resolved. Disruptions in brain development are strongly associated with neurodevelopmental disorders, such as intellectual disability and autism. While the genetic basis of autism is well established, the precise pathological mechanisms remain unclear.

View Article and Find Full Text PDF

Butyrylated modification of corn starch alleviates autism-like behaviors by modulating 5-hydroxytryptamine metabolism and gut-brain neural activity.

Carbohydr Polym

March 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China. Electronic address:

This study was conducted to elucidate the effects of different degrees of substitution (DS) on the properties of propionylated and butyrylated starches and to investigate their efficacy and mechanisms in ameliorating autism-like phenotypes. Fourier transform infrared spectra of propionylated and butyrylated starches revealed the presence of the CO absorption peak at 1730 cm. Additionally, as the DS increased, the surface of the starch granules became rougher, and the crystallinity decreased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!