Maize stalk rot is a major fungal disease worldwide, and is difficult to control by chemical methods. Therefore, in maize breeding, quantitative trait loci (QTLs) conferring resistance are important for controlling the disease. Next-generation sequencing technologies are considered a rapid and efficient method to establish the association of agronomic traits with molecular markers or candidate genes. In the present study, we employed QTL-seq, which is a whole-genome resequencing-based approach, to identify candidate genomic regions conferring resistance to maize stalk rot. A novel resistance QTL was finely mapped, conferring broad-spectrum resistance to stalk rot (). Segregation analysis in F and BCF populations, which were derived from a cross between 18327 (Susceptible) and S72356 (Resistant), indicated that the resistance to was likely to be a quantitatively inherited trait in maize. The result of QTL-seq showed that the resistance to was mapped on chromosome 8 from 161.001 to 170.6 Mb. Based on the simple sequence repeat (SSR) markers, single-nucleotide polymorphism (SNP) markers, and the recombinant test, the location of was narrowed down to 2.04 Mb, flanked by SSR-65 and SNP-25 markers at the physical location from 164.69 to 166.72 Mb based on the maize reference genome. In this region, two candidate resistant genes were found with, one auxin-responsive elements and the other encoding a disease resistance protein. In summary, these results will be useful in maize breeding programs to improve the resistance to in maize.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540892 | PMC |
http://dx.doi.org/10.3389/fpls.2017.01355 | DOI Listing |
Plant Dis
December 2024
Yunnan Agricultural University College of Plant Protection, , Yunnan Agricultural University, Fengyuan Road 95, Kunming, kunming, China, 650201.
Maize (Zea mays. L) is cultivated globally as a staple food crop, animal feed, and biofuel. However, persistent diseases in maize have led significant yield losses and a decline in grain quality (Yang et al.
View Article and Find Full Text PDFBMC Plant Biol
November 2024
Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, 56127, Italy.
Background: The cultivation of maize (Zea mays L.), one of the most important crops worldwide for food, feed, biofuels, and industrial applications, faces significant constraints due to Fusarium verticillioides, a fungus responsible for severe diseases including seedling blights, stalk rot, and ear rot. Its impact is worsened by the fact that chemical and agronomic measures used to control the infection are often inefficient.
View Article and Find Full Text PDFPlant Dis
November 2024
Qujing Normal University, Qujing Normal University Sanjiang Avenue, Qujing, China, 650011;
Plant Dis
November 2024
Chinese Academy of Agricultural Sciences Institute of Vegetables and Flowers, No. 12 Zhongguancun South St., Haidian District, Beijing, China, 100081;
Front Plant Sci
October 2024
Maize Research Institute, Sichuan Agricultural University, Sichuan, Chengdu, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!