Glycerol-3-phosphate acyltransferase is the first acyl esterifying enzyme in phosphatidylglycerol (PG) synthesis process. In this study, we isolated and characterized the glycerol-3-phosphate acyltransferase (GPAT) gene from () and obtained the full length of the GPAT gene from () by 5' and 3' RACE. The clone contained an open reading frame (ORF) of 1167 bp nucleotides that comprised of 388 amino acid residues. Real-time PCR revealed that the mRNA accumulation of in was induced by salt stress. The highest expression levels were observed when leaves were exposed to 300 mM NaCl treatment. At the germination stage, the germination rate and root length of overexpressed Arabidopsis strains were significantly higher than WT under different concentrations of NaCl treatments, while the inhibitory effect was significantly severe in T-DNA insertion mutant strains. In the seedling stage, chlorophyll content, the photochemical efficiency of PSII, PSI oxidoreductive activity (ΔI/Io), and the unsaturated fatty acid content of PG decreased less in overexpressed strains and more in mutant strains than that in WT under salt stress. These results suggest that the overexpression of in Arabidopsis enhances salt tolerance and alleviates the photoinhibition of PSII and PSI under salt stress by improving the unsaturated fatty acid content of PG.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539759 | PMC |
http://dx.doi.org/10.3389/fpls.2017.01337 | DOI Listing |
J Genet Genomics
December 2024
Institute of Genetics and Developmental Biology, Key Laboratory of Seed Innovation, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:
Saline-alkali soil severely reduces the productivity of crops, including maize (Zea mays). Although several genes associated with saline-alkali tolerance have been identified in maize, the underlying regulatory mechanism remains elusive. Here, we report a direct link between colonization by arbuscular mycorrhizal fungi (AMF) and saline-alkali tolerance in maize.
View Article and Find Full Text PDFDig Dis Sci
December 2024
Huadu District People's Hospital of Guangzhou, Huadu District, No. 48 Xinhua Road, Guangzhou, 510800, China.
Background: NXT629, a PPAR-alpha antagonist, exerts widespread effects in many diseases; however, its function and relevant mechanism in cholesterol gallstones (CG) remain largely unknown.
Methods: Male C57BL/6 J mice were fed a regular diet or lithogenic diet (LD), followed by treatment with intraperitoneal injection of NXT629. H&E staining was performed to analyze hepatic pathological changes, and Oil red O staining was conducted to detect lipid accumulation.
Plants (Basel)
December 2024
College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China.
Glycerol-3-phosphate acyltransferase (GPAT), as a rate-limiting enzyme engaged in lipid synthesis pathways, exerts an important role in plant growth and development as well as environmental adaptation throughout diverse growth stages. Alfalfa ( L.) is one of the most significant leguminous forages globally; however, its growth process is frequently exposed to environmental stress, giving rise to issues such as impeded growth and decreased yield.
View Article and Find Full Text PDFAnim Nutr
December 2024
Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
Redox Biol
February 2025
Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany; Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany. Electronic address:
Despite advances in multimodal therapy approaches such as resection, chemotherapy and radiotherapy, the overall survival of patients with grade 4 glioblastoma (GBM) remains extremely poor (average survival time <2 years). Altered lipid metabolism, which increases fatty acid synthesis and thereby contributes to radioresistance in GBM, is a hallmark of cancer. Therefore, we explored the radiosensitizing effect of the clinically approved, lipid-lowering drug fenofibrate (FF) in different GBM cell lines (U87, LN18).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!