In several human malignant tumors of the urogenital tract, including cancers of the endometrium, ovary, urinary bladder, and prostate, it has been possible to identify expression of gonadotropin-releasing hormone (GnRH) and its receptor as part of an autocrine system, which regulates cell proliferation. The expression of GnRH receptor has also been identified in breast cancers and non-reproductive cancers such as pancreatic cancers and glioblastoma. Various investigators have observed dose- and time-dependent growth inhibitory effects of GnRH agonists in cell lines derived from these cancers. GnRH antagonists have also shown marked growth inhibitory effects on most cancer cell lines. This indicates that in the GnRH system in cancer cells, there may not be a dichotomy between GnRH agonists and antagonists. The well-known signaling mechanisms of the GnRH receptor, which are present in pituitary gonadotrophs, are not involved in forwarding the antiproliferative effects of GnRH analogs in cancer cells. Instead, the GnRH receptor activates a phosphotyrosine phosphatase (PTP) and counteracts with the mitogenic signal transduction of growth factor receptors, which results in a reduction of cancer cell proliferation. The PTP activation, which is induced by GnRH, also inhibits G-protein-coupled estrogen receptor 1 (GPER), which is a membrane-bound receptor for estrogens. GPER plays an important role in breast cancers, which do not express the estrogen receptor α (ERα). In metastatic breast, ovarian, and endometrial cancer cells, GnRH reduces cell invasion , metastasis , and the increased expression of S100A4 and CYR61. All of these factors play important roles in epithelial-mesenchymal transition. This review will summarize the present state of knowledge about the GnRH receptor and its signaling in human cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543040 | PMC |
http://dx.doi.org/10.3389/fendo.2017.00187 | DOI Listing |
J Clin Med
December 2024
Global Andrology Forum, Moreland Hills, OH 44022, USA.
Hormonal factors play an essential role as an underlying causative factor of oligoasthenoteratozoospermia (OAT), and these patients can benefit from hormonal medications that modulate the hypothalamic-pituitary-gonadal axis. This review aims to outline the various medications used as hormonal therapy in treating infertile men with OAT. This manuscript focuses on essential hormonal evaluation, identifying men who would benefit from treatment, selecting the appropriate medication, determining the duration of therapy, and evaluating hormonal treatment outcomes.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
The bursa of Fabricius (BF) plays crucial roles in the goslings' immune system. During waterfowl breeding, the presence of lipopolysaccharides (LPSs) in the environment can induce inflammatory damage in geese. Polysaccharides of Atractylodes macrocephala Koidz (PAMKs), as the main active component of the Chinese medicine Atractylodes macrocephala, have significant immune-enhancing effects.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China.
J Clin Med
December 2024
Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland.
This article presents a narrative review that explores the potential link between kisspeptin-a key regulator of the hypothalamic-pituitary-gonadal axis-and the pathogenesis of endometriosis. Kisspeptin plays a significant role in regulating reproductive functions by modulating the release of gonadotropin-releasing hormone (GnRH), which in turn stimulates the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Recent studies suggest that kisspeptin may also impact peripheral reproductive tissues and influence inflammatory processes involved in the development of endometriosis.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China.
In this study, we identified and its putative receptor from the mud crab and explored its potential role in ovarian development. RT-PCR results suggested was extensively expressed in nervous tissues, the ovary, the middle gut, and the Y-organ, while was highly expressed in the ovary. The expression level of in the ovary, eyestalk, and cerebral ganglia gradually increased during ovarian development, whereas its receptor exhibited an opposite expression pattern in the ovary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!