Cilia and flagella are hair-like organelles that project from the cell surface and play important roles in motility and sensory perception. Motility defects in cilia and flagella lead to primary ciliary dyskinesia (PCD), a rare human disease. Recently zinc finger MYND-type containing 10 (ZMYND10) was identified in humans as a PCD-associated gene. In this study, we use medaka fish as a model to characterize the precise functions of zmynd10. In medaka, zmynd10 is exclusively expressed in cells with motile cilia. Embryos with zmynd10 Morpholino knockdown exhibited a left-right (LR) defect associated with loss of motility in Kupffer's vesicle (KV) cilia. This immotility was caused by loss of the outer dynein arms, which is a characteristic ultrastructural phenotype in PCD. In addition, KV cilia in zmynd10 knockdown embryos had a swollen and wavy morphology. Together, these results suggest that zmynd10 is a multi-functional protein that has independent roles in axonemal localization of dynein arms and in formation and/or maintenance of cilia. The C-terminal region of zmynd10 has a MYND-type zinc finger domain (zf-MYND) that is important for its function. Our rescue experiment showed that the zmynd10-ΔC truncated protein, which lacks zf-MYND, was still partially functional, suggesting that zmynd10 has another functional domain besides zf-MYND. To analyze the later stages of development, we generated a zmynd10 knockout mutant using transcription activator-like effector nuclease (TALEN) technology. Adult mutants exhibited sperm dysmotility, scoliosis and progressive polycystic kidney.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2017.08.016 | DOI Listing |
Plant Sci
January 2025
Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China. Electronic address:
Rice (Oryza sativa L.) is one of the most important grain crops in the world. Abiotic stress such as low temperature is an important factor affecting the yield and quality of rice.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia, 119071.
Background: TRIM28 plays a crucial role in maintaining genomic stability and establishing imprinting, facilitated by the diversity of KRAB zinc finger proteins. The SUMOylation of TRIM28 is essential for its function and is enhanced in the presence of the KRAB domain. Previously, we demonstrated that Kaiso, another factor capable of interacting with TRIM28, can promote its SUMOylation.
View Article and Find Full Text PDFCancer Biol Ther
December 2025
Institute of Oncology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China.
Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge in oncology due to its dismal prognosis and limited therapeutic options. In this study, we investigated the role of miR-301a in facilitating crosstalk between the Hedgehog (Hh) and HIPPO/YAP signaling pathways during the progression of PDAC. Our findings revealed that miR-301a served as a central regulatory node, targeting Gli1 within the Hh pathway and STK4 within the HIPPO/YAP pathway.
View Article and Find Full Text PDFZool Res
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China. E-mail:
Severe combined immunodeficiency disease (SCID), characterized by profound immune system dysfunction, can lead to life-threatening infections and death. Animal models play a pivotal role in elucidating biological processes and advancing therapeutic strategies. Recent advances in gene-editing technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), CRISPR/Cas9, and base editing, have significantly enhanced the generation of SCID models.
View Article and Find Full Text PDFFront Plant Sci
January 2025
State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
Leaf vein, an essential part of leaf architecture, plays significant roles in shaping the proper leaf size. To date, the molecular mechanisms governing leaf development including leaf venation patterning remains poorly understood in birch. Here, we performed the genome-wide identification of homeodomain-like (HD-like) superfamily genes using phylogenetic analysis and revealed the functional role of a potential HD-like gene in leaf growth and development using transgenic technology and transcriptomic sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!