Cilia and flagella are hair-like organelles that project from the cell surface and play important roles in motility and sensory perception. Motility defects in cilia and flagella lead to primary ciliary dyskinesia (PCD), a rare human disease. Recently zinc finger MYND-type containing 10 (ZMYND10) was identified in humans as a PCD-associated gene. In this study, we use medaka fish as a model to characterize the precise functions of zmynd10. In medaka, zmynd10 is exclusively expressed in cells with motile cilia. Embryos with zmynd10 Morpholino knockdown exhibited a left-right (LR) defect associated with loss of motility in Kupffer's vesicle (KV) cilia. This immotility was caused by loss of the outer dynein arms, which is a characteristic ultrastructural phenotype in PCD. In addition, KV cilia in zmynd10 knockdown embryos had a swollen and wavy morphology. Together, these results suggest that zmynd10 is a multi-functional protein that has independent roles in axonemal localization of dynein arms and in formation and/or maintenance of cilia. The C-terminal region of zmynd10 has a MYND-type zinc finger domain (zf-MYND) that is important for its function. Our rescue experiment showed that the zmynd10-ΔC truncated protein, which lacks zf-MYND, was still partially functional, suggesting that zmynd10 has another functional domain besides zf-MYND. To analyze the later stages of development, we generated a zmynd10 knockout mutant using transcription activator-like effector nuclease (TALEN) technology. Adult mutants exhibited sperm dysmotility, scoliosis and progressive polycystic kidney.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2017.08.016DOI Listing

Publication Analysis

Top Keywords

zinc finger
12
dynein arms
12
zmynd10
10
finger mynd-type
8
mynd-type zmynd10
8
axonemal localization
8
localization dynein
8
polycystic kidney
8
cilia flagella
8
domain zf-mynd
8

Similar Publications

Identification and characterization of cold-responsive cis-element in the OsPHD13 and OsPHD52 promoter and its upstream regulatory proteins in rice.

Plant Sci

January 2025

Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China. Electronic address:

Rice (Oryza sativa L.) is one of the most important grain crops in the world. Abiotic stress such as low temperature is an important factor affecting the yield and quality of rice.

View Article and Find Full Text PDF

Background: TRIM28 plays a crucial role in maintaining genomic stability and establishing imprinting, facilitated by the diversity of KRAB zinc finger proteins. The SUMOylation of TRIM28 is essential for its function and is enhanced in the presence of the KRAB domain. Previously, we demonstrated that Kaiso, another factor capable of interacting with TRIM28, can promote its SUMOylation.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge in oncology due to its dismal prognosis and limited therapeutic options. In this study, we investigated the role of miR-301a in facilitating crosstalk between the Hedgehog (Hh) and HIPPO/YAP signaling pathways during the progression of PDAC. Our findings revealed that miR-301a served as a central regulatory node, targeting Gli1 within the Hh pathway and STK4 within the HIPPO/YAP pathway.

View Article and Find Full Text PDF

Advances and applications of genome-edited animal models for severe combined immunodeficiency.

Zool Res

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China. E-mail:

Severe combined immunodeficiency disease (SCID), characterized by profound immune system dysfunction, can lead to life-threatening infections and death. Animal models play a pivotal role in elucidating biological processes and advancing therapeutic strategies. Recent advances in gene-editing technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), CRISPR/Cas9, and base editing, have significantly enhanced the generation of SCID models.

View Article and Find Full Text PDF

Leaf vein, an essential part of leaf architecture, plays significant roles in shaping the proper leaf size. To date, the molecular mechanisms governing leaf development including leaf venation patterning remains poorly understood in birch. Here, we performed the genome-wide identification of homeodomain-like (HD-like) superfamily genes using phylogenetic analysis and revealed the functional role of a potential HD-like gene in leaf growth and development using transgenic technology and transcriptomic sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!