Multi-sensor assessment of dynamic balance during gait in patients with subacute stroke.

J Biomech

Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (BOHNES), Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.

Published: August 2017

The capacity to maintain upright balance by minimising upper body oscillations during walking, also referred to as gait stability, has been associated with a decreased risk of fall. Although it is well known that fall is a common complication after stroke, no study considered the role of both trunk and head when assessing gait stability in this population. The primary aim of this study was to propose a multi-sensor protocol to quantify gait stability in patients with subacute stroke using gait quality indices derived from pelvis, sternum, and head accelerations. Second, the association of these indices with the level of walking ability, with traditional clinical scale scores, and with fall events occurring within the six months after patients' dismissal was investigated. The accelerations corresponding to the three abovementioned body levels were measured using inertial sensors during a 10-Meter Walk Test performed by 45 inpatients and 25 control healthy subjects. A set of indices related to gait stability were estimated and clinical performance scales were administered to each patient. The amplitude of the accelerations, the way it is attenuated/amplified from lower to upper body levels, and the gait symmetry provide valuable information about subject-specific motor strategies, discriminate between different levels of walking ability, and correlate with clinical scales. In conclusion, the proposed multi-sensor protocol could represent a useful tool to quantify gait stability, support clinicians in the identification of patients potentially exposed to a high risk of falling, and assess the effectiveness of rehabilitation protocols in the clinical routine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2017.07.034DOI Listing

Publication Analysis

Top Keywords

gait stability
20
gait
8
patients subacute
8
subacute stroke
8
upper body
8
multi-sensor protocol
8
quantify gait
8
walking ability
8
body levels
8
stability
5

Similar Publications

Background: The prevalence of stroke is high in both males and females, and it rises with age. Stroke often leads to sensor and motor issues, such as hemiparesis affecting one side of the body. Poststroke patients require torso stabilization exercises, but maintaining proper posture can be challenging due to their condition.

View Article and Find Full Text PDF

Ossification of the ligamentum flavum (OLF) can lead to dural ossification, significantly increasing the risk of complications, including intraoperative nerve injury. The application of augmented reality (AR) and advanced digital technologies in spine surgery has the potential to reduce these risks. This case report highlights a perioperative nerve injury-free microsurgery using elastic image fusion technology, which integrates preoperative imaging with intraoperative computed tomography for a patient with severe stenotic OLF and dural ossification.

View Article and Find Full Text PDF

Purpose: Plantar soft tissue properties affect foot biomechanics during movement. This study aims to explore the relationship between plantar pressure features and soft tissue stiffness through interpretable neural network model. The findings could inform orthotic insole design.

View Article and Find Full Text PDF

The Effect of Flexible Flatfoot on the Running Function in School-Age Children.

J Orthop Res

January 2025

1-7 Gait and Motion Analysis Center, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Flexible flatfoot is common among school-age children and significantly affects walking efficiency, balance stability, and joint-movement coordination in children. The demands on the skeletal structure and muscle function are increased during running; however, the impact of a flexible flatfoot on children's running capabilities is unclear. In this study, we aimed to investigate the effects of flexible flatfoot on the running function of school-age children.

View Article and Find Full Text PDF

Background: Ankle joint position sense (AJPS) accuracy and postural control are crucial for maintaining balance and stability, particularly in individuals with plantar fasciitis who may experience proprioceptive and functional impairments. Understanding how psychosocial factors, such as pain catastrophizing, and biomechanical measures, like muscle strength and gait parameters related to proprioception and postural control, can inform more effective treatment approaches. This study aimed to (1) examine the relationship between AJPS accuracy and biomechanical factors-including postural stability, lower limb muscle strength, and gait parameters-in individuals with plantar fasciitis d (2) analyze the impact of psychosocial factors, including pain catastrophizing, physical activity level, and quality of life, on AJPS accuracy and postural control in this population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!