London dispersion constitutes one of the fundamental interaction forces between atoms and between molecules. While modern computational methods have been developed to describe the strength of dispersive interactions in the gas phase properly, the importance of inter- and intramolecular dispersion in solution remains yet to be fully understood because experimental data are still sparse in that regard. We herein report a detailed experimental and computational study of the contribution of London dispersion to the bond dissociation of proton-bound dimers, both in the gas phase and in dichloromethane solution, showing that attenuation of inter- and intramolecular dispersive interaction by solvent is large (about 70% in dichloromethane), but not complete, and that current state-of-the-art implicit solvent models employed in quantum-mechanical computational studies treat London dispersion poorly, at least for this model system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.7b06997 | DOI Listing |
Sleep
January 2025
UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).
View Article and Find Full Text PDFJACC Clin Electrophysiol
December 2024
St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom. Electronic address:
Background: The sympathetic autonomic nervous system plays a major role in arrhythmia development and maintenance. Historical preclinical studies describe preferential increases in cardiac sympathetic tone upon selective stimulation of the subclavian ansae (SA), a nerve cord encircling the subclavian artery.
Objectives: This study sought to define, for the first time, the functional anatomy and physiology of the SA in humans using a percutaneous approach.
Materials (Basel)
December 2024
Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
A new methodology based on the Hamieh thermal model was applied for the determination of the surface properties of solid surfaces. The new approach consisted of the accurate quantification of the London dispersive surface energy of materials using the two-dimensional inverse gas chromatography technique at infinite dilution. This technique used the notion of the net retention volume of adsorbed molecules on the solid catalysts, allowing the determination of the free energy of adsorption.
View Article and Find Full Text PDFDent Mater
January 2025
Department of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK; Photon Science Institute, University of Manchester, Manchester M13 9PL, UK. Electronic address:
Objective: To assess the impact of mechanical decontamination using rotary brushes on the surface topography, elemental composition, roughness, and wettability of titanium implant surfaces.
Methods: Four commercially available rotary brushes were used: Labrida BioClean Brush® (LB), i-Brush1 (IB), NiTiBrush Nano (NiTiB), and Peri-implantitis Brush (PIB). Seventy-five titanium discs with sandblasted, large-grit, acid-etched (SLA) surfaces were randomly assigned to five groups (n = 15): LB, IB, NiTiB, PIB, and a control group.
Mol Metab
January 2025
Section of Endocrinology and Investigative Medicine, Imperial College London, United Kingdom. Electronic address:
Objective: There is renewed interest in targeting the glucose-dependent insulinotropic polypeptide receptor (GIPR) for treatment of obesity and type 2 diabetes. G-protein coupled receptor desensitisation is suggested to reduce the long-term efficacy of glucagon-like-peptide 1 receptor (GLP-1R) agonists and may similarly affect the efficacy of GIPR agonists. We explored the extent of pancreatic GIPR functional desensitisation with sustained agonist exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!