Control by Low Levels of Calcium of Mammalian Cell Membrane Electropermeabilization.

J Membr Biol

Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.

Published: April 2018

Electric pulses, when applied to a cell suspension, induce a reversible permeabilization of the plasma membrane. This permeabilized state is a long-lived process (minutes). The biophysical molecular mechanisms supporting the membrane reorganization associated to its permeabilization remain poorly understood. Modeling the transmembrane structures as toroidal lipidic pores cannot explain why they are long-lived and why their resealing is under the control of the ATP level. Our results describe the effect of the level of free Calcium ions. Permeabilization induces a Ca burst as previously shown by imaging of cells loaded with Fluo-3. But this sharp increase is reversible even when Calcium is present at a millimolar concentration. Viability is preserved to a larger extent when submillimolar concentrations are used. The effect of calcium ions is occurring during the resealing step not during the creation of permeabilization as the same effect is observed if Ca is added in the few seconds following the pulses. The resealing time is faster when Ca is present in a dose-dependent manner. Mg is observed to play a competitive role. These observations suggest that Ca is acting not on the external leaflet of the plasma membrane but due to its increased concentration in the cytoplasm. Exocytosis will be enhanced by this Ca burst (but hindered by Mg) and occurs in the electropermeabilized part of the cell surface. This description is supported by previous theoretical and experimental results. The associated fusion of vesicles will be the support of resealing.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00232-017-9981-yDOI Listing

Publication Analysis

Top Keywords

plasma membrane
8
calcium ions
8
control low
4
low levels
4
calcium
4
levels calcium
4
calcium mammalian
4
mammalian cell
4
membrane
4
cell membrane
4

Similar Publications

The elongation of tissues and organs is important for proper morphogenesis in animal development. In Drosophila ovaries, the elongation of egg chambers involves aligned Collagen IV fiber-like structures, a gradient of extracellular matrix stiffness and actin-based protrusion-driven collective cell migration, leading to the rotation of the egg chamber. Egg chamber elongation and rotation depend on the atypical cadherin Fat2.

View Article and Find Full Text PDF

Purpose: Precision medicine plays an important role in the treatment of patients with advanced melanoma. Despite its high incidence in White patients, advanced melanoma is rare in Asian countries, hampering prospective clinical trials targeting the Asian population. This retrospective study aimed to elucidate the real-world molecular diagnoses and outcomes of Japanese patients with melanoma using comprehensive genome profiling (CGP).

View Article and Find Full Text PDF

Computational Insights into Membrane Disruption by Cell-Penetrating Peptides.

J Chem Inf Model

January 2025

Unit of Biophysics, Department of Biochemistry and Molecular Biology, Facultat de Medicina, Av. Can Domènech s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain.

Cell-penetrating peptides (CPPs) can translocate into cells without inducing cytotoxicity. The internalization process implies several steps at different time scales ranging from microseconds to minutes. We combine adaptive Steered Molecular Dynamics (aSMD) with conventional Molecular Dynamics (cMD) to observe nonequilibrium and equilibrium states to study the early mechanisms of peptide-bilayer interaction leading to CPPs internalization.

View Article and Find Full Text PDF

Investigating Cell-Induced Mixing Dynamics in Microfluidic Droplets Using the Lattice Boltzmann Method.

Langmuir

January 2025

CNNFM Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563 Tehran, Iran.

This study investigates the impact of cell dynamics on mixing efficiency within a microfluidic droplet, emphasizing the relationship between cell motion, deformability, and resultant asymmetry in velocity and concentration fields. Simulations were conducted for droplets containing encapsulated cells at varying Peclet numbers ( = 100-800) and coupling constants ( = 0.0025, 0.

View Article and Find Full Text PDF

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!