Endophthalmitis, an inflammation of the eye due to perioperative infection, may occur after cataract surgery. Intraocular lenses (IOLs) loaded with an antibiotic have been proposed asan alternative to the conventional postoperative endophthalmitis prophylaxis, since the antibiotic is delivered directly to the target site. In this work, an IOL-based antibiotic releasing system was prepared from a copolymer used in the production of IOLs and a fluoroquinolone used in endophthalmitis prophylaxis (moxifloxacin, MFX). Argon plasma-assisted grafting with 2-hydroxyethyl methacrylate (HEMA) in the presence of MFX was the approach selected for surface modification, with MFX loaded both by entrapment in the grafted polyHEMA coating and by soaking. Surface and bulk properties were evaluated before and after surface modification and the MFX release profiles were obtained both in batch mode (sink conditions) and under hydrodynamic conditions, employing a purpose-built microfluidic cell, which simulated the hydrodynamic conditions around the eye lens. The effect of storage on the release profile of the best system was also assessed. The best system released MFX for ca. 15days above the minimum inhibitory concentration for Staphylococcus aureus and Staphylococcus epidermidis. The released MFX showed antimicrobial activity against these bacteria and was non-cytotoxic against corneal endothelial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2017.08.006 | DOI Listing |
Sci Rep
January 2025
Saint Petersburg State University, St. Petersburg, 198504, Russia.
Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), an experimental and theoretical study of changes in the electronic structure (dispersion dependencies) and corresponding modification of the energy band gap at the Dirac point (DP) for topological insulator (TI) [Formula: see text] have been carried out with gradual replacement of magnetic Mn atoms by non-magnetic Ge atoms when concentration of the latter was varied from 10% to 75%. It was shown that when Ge concentration increases, the bulk band gap decreases and reaches zero plateau in the concentration range of 45-60% while trivial surface states (TrSS) are present and exhibit an energy splitting of 100 and 70 meV in different types of measurements. It was also shown that TSS disappear from the measured band dispersions at a Ge concentration of about 40%.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, China.
This study introduces a deep learning-based automatic evaluation method for analyzing the microstructure of steel with scanning electron microscopy (SEM), aiming to address the limitations of manual marking and subjective assessments by researchers. By leveraging advanced computer vision algorithms, specifically a suitable model for long-term dendritic solidifications named Tang Rui Detect (TRD), the method achieves efficient and accurate detection and quantification of microstructure features. This approach not only enhances the training process but also simplifies loss function design, ultimately leading to a proper evaluation of surface modifications in steel materials.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Bioengineering, School of Engineering, The University of Tokyo; Institute of Medical Science, The University of Tokyo; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Japan. Electronic address:
Post-translational modification of proteins is a crucial biological reaction that regulates protein functions by altering molecular properties. The specific detection of such modifications in proteins has made significant contributions to molecular biology research and holds potential for future drug development applications. In HIV research, for example, tyrosine sulfation at the N-terminus of C-C chemokine receptor type 5 (CCR5) is considered to significantly enhance HIV infection efficiency.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China. Electronic address:
Cellulose nanofibers (CNFs) have gained increasing attention due to their robust mechanical properties, favorable biocompatibility, and facile surface modification. However, green and recyclable CNF production remains challenging. Herein, a green, low-cost and room-temperature strategy was developed to exfoliate CNFs using deep eutectic solvents.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China.
Given the environmental and ecological risks posed by wastewater bearing Mo, the characteristics and microscopic interactions of existing silica-based adsorbents have not been thoroughly investigated, highlighting the need to enhance the porosity and chemical interactions of these materials. Considering the effectiveness of amino groups in binding metal oxyanions, this study investigates the adsorption performance and mechanism of amino-functionalized MCM-41 for Mo(VI), with the goal of efficiently remediating Mo-contaminated wastewater. MCM-41 modified by amino group retains its original structure and mesoporous characteristics while featuring a positively charged surface and chemically bonded amino groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!