Dairy calves are at high risk for morbidity and mortality early in life. Understanding producer attitudes is important for implementation of best management practices to improve calf health. The objectives of this study were to evaluate usage frequency and producer attitudes on key calf management practices between conventional and organic dairy operations. A cross-sectional survey was mailed to conventional and organic dairy producers in Ohio and Michigan that included questions on cow-calf separation, colostrum management, and vaccination use. The overall survey response rate was 49% (727/1,488); 449 and 172 conventional and organic producer respondents, respectively, were included in the final analysis. Binary, cumulative, and multinomial logistic regression models were used to test differences within and between herd types for management practices and producer attitudes. The majority of conventional (64%, 279/439) producers reported separating the calf from the dam 30 min to 6 h after birth. More organic (34%, 56/166) than conventional (18%, 80/439) producers reported separation 6 to 12 h after birth, and organic producers were more likely to agree time before separation is beneficial. Few conventional (10%, 44/448) and organic (3%, 5/171) producers reported measuring colostrum quality. Most conventional producers (68%, 304/448) hand-fed the first feeding of colostrum, whereas the majority of organic producers (38%, 69/171) allowed calves to nurse colostrum. Last, 44% (188/430) of conventional producers reported vaccinating their calves for respiratory disease, compared with 14% (22/162) of organic producers; organic producers were more likely to perceive vaccines as ineffective and harmful to calf health. Thus, the usage frequency and perceived risks and benefits of calf management practices vary considerably between conventional and organic dairy producers. These findings provide helpful information to understand decision making at the herd level regarding key calf management and health practices, regardless of production systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2017-12565 | DOI Listing |
Molecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Manipal University Jaipur VPO-Dehmi-Kalan, Off Jaipur Ajmer Express Way Jaipur Rajasthan 303007 India
Triazole, a nitrogen-containing five-membered heterocycle with two isomeric forms, 1,2,3-triazole and 1,2,4-triazole, has proven to be a valuable component in the pharmaceutical domain. Owing to its widespread utility in drug development, pharmaceutical and medicinal chemistry, several synthetic methods have been explored, such as different catalytic systems, solvents, and heating methodologies in recent years. However, some methods were associated with several limitations, such as harsh reaction conditions, high temperatures, low atom economy, and long reaction times.
View Article and Find Full Text PDFACS Omega
January 2025
Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.
View Article and Find Full Text PDFNanoscale
January 2025
College of Chemical Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Interfacial solar vapor generation (ISVG) accompanied by photocatalytic degradation holds immense potential to mitigate water scarcity and pollution. Distinct from the two detached functional components (photothermal agent and photocatalyst) in a conventional evaporator, in this study, an all-in-one photothermal/catalytic agent, nitrogen-containing honeycomb carbon nanosheets (NHC), was engineered for synergistic high-efficiency steam generation and photocatalysis functions. It was demonstrated that the superoxide radical generated on the surface of NHC conferred its catalytic activity to the photodegradation of organic pollutants under full solar spectrum irradiation.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
Efficient room-temperature sensors for toxic gases are essential to ensure a safe and healthy life. Conducting frameworks have shown great promise in advancing gas sensing technologies. In this study, two new organic-inorganic frameworks [CuX(PPh)(L)], CP1 (X = I) and CP2 (X = Br) have been synthesized using (pyridin-4-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine (L) and triphenylphosphine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!