The control of disinfection byproducts and their precursors in biologically active filtration processes.

Water Res

Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA. Electronic address:

Published: November 2017

While disinfection provides hygienically safe drinking water, the disinfectants react with inorganic or organic precursors, leading to the formation of harmful disinfection byproducts (DBPs). Biological filtration is a process in which an otherwise conventional granular filter is designed to remove not only fine particulates but also dissolved organic matters (e.g., DBP precursors) through microbially mediated degradation. Recently, applications of biofiltration in drinking water treatment have increased significantly. This review summarizes the effectiveness of biofiltration in removing DBPs and their precursors and identifies potential factors in biofilters that may control the removal or contribute to formation of DBP and their precursors during drinking water treatment. Biofiltration can remove a fraction of the precursors of halogenated DBPs (trihalomethanes, haloacetic acids, haloketones, haloaldehydes, haloacetonitriles, haloacetamides, and halonitromethanes), while also demonstrating capability in removing bromate and halogenated DBPs, except for trihalomethanes. However, the effectiveness of biofiltration mediated removal of nitrosamine and its precursors appears to be variable. An increase in nitrosamine precursors after biofiltration was ascribed to the biomass sloughing off from media or direct nitrosamine formation in the biofilter under certain denitrifying conditions. Operating parameters, such as pre-ozonation, media type, empty bed contact time, backwashing, temperature, and nutrient addition may be optimized to control the regulated DBPs in the biofilter effluent while minimizing the formation of unregulated emerging DBPs. While summarizing the state of knowledge of biofiltration mediated control of DBPs, this review also identifies several knowledge gaps to highlight future research topics of interest.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2017.07.080DOI Listing

Publication Analysis

Top Keywords

drinking water
12
disinfection byproducts
8
precursors
8
dbp precursors
8
water treatment
8
effectiveness biofiltration
8
halogenated dbps
8
dbps trihalomethanes
8
biofiltration mediated
8
nitrosamine precursors
8

Similar Publications

Introduction: The establishment of a high-throughput quantification approach for waterborne pathogenic protozoa and helminths is crucial for rapid screening and health risk assessment.

Methods: We developed a high-throughput quantitative polymerase chain reaction (HT-qPCR) assay targeting 19 waterborne protozoa and 3 waterborne helminths and validated its sensitivity, specificity, and repeatability. The assay was then applied to test various environmental media samples.

View Article and Find Full Text PDF

Background: Globally, infectious diseases such as pneumonia, diarrhea, and malaria are the leading causes of death for children under 5. Diarrheal disease is a significant public health concern and causes the death of approximately 525,000 children under the age of 5 every year. In Ethiopia, studies revealed that the prevalence of diarrhea among children under 5 years is alarming.

View Article and Find Full Text PDF

This article evaluates the prospects for rainwater harvesting (RWH) as a means of optimizing water management in the Mandara Mountains. RWH is a small-scale water conservation approach for locally intercepting and storing rainfall before it enters the usual hydrologic cycle. This ancient practice has recently sustained lives in semiarid areas of the world (e.

View Article and Find Full Text PDF

Environmental antibiotic residues (EARs) and antibiotic-resistant bacteria (ARB) are known to contribute to global antimicrobial resistance (AMR). This study investigated EAR levels in selected wells, river, abattoir wastewater, bottled water and sachet water from Ede, Nigeria. Ecological risk quotient (RQ) and health risk (Hazard quotient) of the levels of these EARs, ARB and multidrug-resistant bacteria (MDR) with their antibiotic resistance were calculated.

View Article and Find Full Text PDF

MC-LR induces and exacerbates Colitis in mice through the JAK1/STAT3 pathway.

J Toxicol Environ Health A

January 2025

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.

Inflammatory bowel disease (IBD) is a complex gastrointestinal disorder attributed to genetic and environmental factors. Microcystin-leucine-arginine (MC-LR) is an environmental toxin that accumulates in the gut and produces intestinal damage. The aim of this study was to investigate the effects of exposure to MC-LR on development and progression of IBD as well examine the underlying mechanisms of microcystin-initiated tissue damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!