Changes in gluteal muscle forces with alteration of footstrike pattern during running.

Gait Posture

Exercise and Sport Science, University of Wisconsin - La Crosse, 1900 Pine Street, La Crosse, WI 54651, United States. Electronic address:

Published: October 2017

Gait retraining is a common form of treatment for running related injuries. Proximal factors at the hip have been postulated as having a role in the development of running related injuries. How altering footstrike affects hip muscles forces and kinematics has not been described. Thus, we aimed to quantify differences in hip muscle forces and hip kinematics that may occur when healthy runners are instructed to alter their foot strike pattern from their habitual rear-foot strike to a forefoot strike. This may gain insight on the potential etiology and treatment methods of running related lower extremity injury. Twenty-five healthy female runners completed a minimum of 10 running trials in a controlled laboratory setting under rear-foot strike and instructed forefoot strike conditions. Kinetic and kinematic data were used in an inverse dynamic based static optimization to estimate individual muscle forces during running. Within subject differences were investigated using a repeated measures multi-variate analysis of variance. Peak gluteus medius and minimus and hamstring forces were reduced while peak gluteus maximus force was increased when running with an instructed forefoot strike pattern. Peak hip adduction, hip internal rotation, and heel-COM distance were also reduced. Therefore, instructing habitual rearfoot strike runners to run with a forefoot strike pattern resulted in changes in peak gluteal and hamstring muscle forces and hip kinematics. These changes may be beneficial to the development and treatment of running related lower extremity injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2017.08.005DOI Listing

Publication Analysis

Top Keywords

muscle forces
16
forefoot strike
16
strike pattern
12
running
8
treatment running
8
running injuries
8
forces hip
8
hip kinematics
8
strike
8
rear-foot strike
8

Similar Publications

Skipping represents a training alternative to running due to its lower knee contact forces and higher whole-body metabolic cost. The increased metabolic cost of skipping is associated with a higher vertical center-of-mass (COM) displacement during the support and flight phases of the skipping hop compared to running. However, skipping has lower muscle force impulses than running.

View Article and Find Full Text PDF

Isokinetic strength and jumping abilities of teenage soccer players playing in different field positions.

Acta Bioeng Biomech

September 2024

Department of Biomedical Basis of Physical Culture, Faculty of Health Science and Physical Culture, Kazimierz Wielki University in Bydgoszcz, Poland.

Soccer is a sport being performed in a very dynamic manner. It requires soccer players to be able to develop high muscle force in a very short period of time. The aim of the study was to evaluate the strength and jumping abilities of young soccer players playing in different positions on the field.

View Article and Find Full Text PDF

The real rotational capacity of the human joints - the muscular and gravitational torques and the foot as a platform.

Acta Bioeng Biomech

September 2024

Jagiellonian University Medical College, Faculty of Medicine, Department of Bioinformatics and Telemedicine, Kraków, Poland.

The purpose was to answer what is the relationship between torques acting on the human body, how does the triceps calf muscle balance the weight of a tilted body and what is the foot's role in the titling body? Two research models were developed. Model 1 - the one-sided lever system consists of a flat bar with, an axis of rotation, used to determine the weight and torque at a given point on it. Model 2 - the two-sided lever system consists of a flat bar imitating a tilted body counteracted by the Achilles tendon, and a platform imitating a foot.

View Article and Find Full Text PDF

: Toe flexor strength (TFS) has been determined to evaluate the toe flexor muscle function. However, it is unclear how strength and size relationships of toe flexor muscles vary depending on the toes intended for force production. We aimed to clarify this by examining the relationship between TFS and toe flexor muscle size, and hypothesized TFS produced by all toes (TFS-All), the great toe (TFS-Great) and lesser toes (TFS-Lesser) would be specifically associated with the size of the muscles specialized in each corresponding toe flexion.

View Article and Find Full Text PDF

The aim of this study was to compare the effectiveness of different types of low level laser treatment (LLLT) in reducing pain levels, changing oxygen saturation and bite force in patients with myofacial pain syndrome (MPS). 45 patients were randomly assigned to three groups: Group 1 (GRR laser, n = 15) received LLLT with Gallium-Aluminium-Arsenide (GaAlAs) diode laser with a wavelength of 904 nm and red laser with a wavelength of 650 nm over masseter muscle region. Group 2 (Nd: YAG laser, n = 15) were treated with Neodymium-doped Yttrium Aluminium Garnet laser with a wavelength of 1064 nm and the same protocol with Nd: YAG laser was performed in the Group 3 (placebo, n = 15) using sham device.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!