BN fullerene as a carrier for 5-fluorouracil anti-cancer drug delivery: DFT studies.

J Mol Graph Model

Department of Physics, College of Science, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran. Electronic address:

Published: October 2017

It has been previously indicated that BN nanostructures may be nontoxic and biocompatible. Here the potential application of a BN is explored as a drug delivery system for anti-cancer 5-fluorouracil based on the density functional theory. This drug prefers to attach via its oxygen atoms to the B atoms of the cluster with adsorption energy about -11.90kcalmol based on the dispersion corrected B3LYP level of theory. To make the cluster more appropriate for drug delivery, we replaced a B atom by Si or Al atom to improve the interaction strength. The calculated adsorption energies are about -50.13 and -34.19kcalmol for Al and Si doped BN clusters, respectively. It was found that, in addition to the more negative adsorption energy, the electronic properties of Al-doped BN are significantly sensitive to the drug adsorption. Also, a drug release mechanism is proposed, indicating that in the low pH of the cancer cells the drug and BN cluster are considerably protonated, thereby separating the drug from the surface of the cluster.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2017.08.003DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
drug
8
adsorption energy
8
fullerene carrier
4
carrier 5-fluorouracil
4
5-fluorouracil anti-cancer
4
anti-cancer drug
4
delivery dft
4
dft studies
4
studies indicated
4

Similar Publications

Objectives: Past studies have shown the efficacy of spinal targeted drug delivery (TDD) in pain relief, reduction in opioid use, and cost-effectiveness in long-term management of complex chronic pain. We conducted a survey to determine treatment variables associated with patient satisfaction.

Materials And Methods: Patients in a single pain clinic who were implanted with Medtronic pain pumps to relieve intractable pain were identified from our electronic health record.

View Article and Find Full Text PDF

Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques.

View Article and Find Full Text PDF

Application of biomass carbon dots in food packaging.

Environ Sci Pollut Res Int

January 2025

College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.

Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties.

View Article and Find Full Text PDF

Delayed atorvastatin delivery promotes recovery after experimental spinal cord injury.

Neurotherapeutics

January 2025

Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA. Electronic address:

Spinal cord injury (SCI) significantly alters gene expression, potentially impeding functional recovery. This study investigated the effects of atorvastatin, a widely prescribed cholesterol-lowering drug, on gene expression and functional recovery in a chronic murine SCI model. Female C57BL/6J mice underwent moderate 0.

View Article and Find Full Text PDF

Design and implication of a breast cancer-targeted drug delivery system utilizing the Kisspeptin/GPR54 system.

Int J Pharm

January 2025

Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Electronic address:

Kisspeptins function as endogenous ligands for the G protein-coupled receptor GPR54. While the primary role of the Kisspeptin/GPR54 signaling pathway pertains to reproduction, several studies have shown that GPR54 is highly expressed in breast cancer, and we further confirmed this result that GPR54 expression is significantly upregulated in breast cancer cells. Based on this finding, we developed a liposomal drug delivery system utilizing the Kisspeptin/GPR54 system to treat breast cancer after confirming the safety of Kp-10-228.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!