Peer-led small groups: Are we on the right track?

Perspect Med Educ

McGill University Centre for Medical Education, Montreal, Quebec, Canada.

Published: October 2017

Introduction: Peer tutor-led small group sessions are a valuable learning strategy but students may lack confidence in the absence of a content expert. This study examined whether faculty reinforcement of peer tutor-led small group content was beneficial.

Methods: Two peer tutor-led small group sessions were compared with one faculty-led small group session using questionnaires sent to student participants and interviews with the peer tutors. One peer tutor-led session was followed by a lecture with revision of the small group content; after the second, students submitted a group report which was corrected and returned to them with comments.

Results: Student participants and peer tutors identified increased discussion and opportunity for personal reflection as major benefits of the peer tutor-led small group sessions, but students did express uncertainty about gaps in their learning following these sessions. Both methods of subsequent faculty reinforcement were perceived as valuable by student participants and peer tutors. Knowing in advance that the group report would be corrected reduced discussion in some groups, potentially negating one of the major benefits of the peer tutor-led sessions.

Discussion: Faculty reinforcement of peer-tutor led small group content benefits students but close attention should be paid to the method of reinforcement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630531PMC
http://dx.doi.org/10.1007/s40037-017-0370-0DOI Listing

Publication Analysis

Top Keywords

small group
28
peer tutor-led
24
tutor-led small
16
group sessions
12
faculty reinforcement
12
group content
12
student participants
12
peer tutors
12
peer
9
group
8

Similar Publications

Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018).

View Article and Find Full Text PDF

Measuring lower extremity impact acceleration is a common strategy to identify runners with increased injury risk. However, existing axial peak tibial acceleration (PTA) thresholds for determining high-impact runners typically rely on small samples or fixed running speeds. This study aimed to describe the distribution of axial PTA among runners at their preferred running speed, determine an appropriate adjustment for investigating impact magnitude at different speeds, and compare biomechanics between runners classified by impact magnitude.

View Article and Find Full Text PDF

The transmembrane potential of plasma membranes and membrane-bound organelles plays a fundamental role in cellular functions such as signal transduction, ATP synthesis, and homeostasis. Rhodamine voltage reporters (RhoVRs), which operate based on the photoinduced electron transfer (PeT) mechanism, are non-invasive, small-molecule voltage sensors that can detect rapid voltage changes, with some of them specifically targeting the inner mitochondrial membrane. In this work, we conducted extensive molecular dynamics simulations and free-energy calculations to investigate the physicochemical properties governing the orientation as well as membrane permeation barriers of three RhoVRs.

View Article and Find Full Text PDF

Background: The prognosis for non-small cell lung cancer (NSCLC) patients treated with standard platinum-based chemotherapy was suboptimal, with safety concerns. Following encouraging results from a preliminary phase I study, this phase II trial investigated the efficacy and safety of first-line sintilimab and anlotinib in metastatic NSCLC.

Methods: In this open-label, randomized controlled trial (NCT04124731), metastatic NSCLC without epithelial growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), or proto-oncogene tyrosine-protein kinase ROS (ROS1) mutations, and previous treatments for metastatic disease were enrolled.

View Article and Find Full Text PDF

The controlled binding of proteins on nanoparticle surfaces remains a grand challenge required for many applications ranging from biomedical to energy storage. The difficulty in achieving this ability arises from the different functional groups of the biomolecule that can adsorb on the nanoparticle surface. While most proteins can only adopt a single structure, metamorphic proteins can access at least two different conformations, which presents intriguing opportunities to exploit such structural variations for binding to nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!