Shock formation and structure in magnetic reconnection with a streaming flow.

Sci Rep

Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou, 310027, China.

Published: August 2017

The features of magnetic reconnection with a streaming flow have been investigated on the basis of compressible resistive magnetohydrodynamic (MHD) model. The super-Alfvenic streaming flow largely enhances magnetic reconnection. The maximum reconnection rate is almost four times larger with super-Alfvenic streaming flow than sub-Alfvénic streaming flow. In the nonlinear stage, it is found that there is a pair of shocks observed in the inflow region, which are manifested to be slow shocks for sub-Alfvénic streaming flow, and fast shocks for super-Alfvénic streaming flow. The quasi-period oscillation of reconnection rates in the decaying phase for super-Alfvénic streaming flow is resulted from the different drifting velocities of the shock and the X point.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562795PMC
http://dx.doi.org/10.1038/s41598-017-08836-8DOI Listing

Publication Analysis

Top Keywords

streaming flow
32
magnetic reconnection
12
streaming
8
reconnection streaming
8
flow
8
super-alfvenic streaming
8
sub-alfvénic streaming
8
super-alfvénic streaming
8
reconnection
5
shock formation
4

Similar Publications

Generating accurate and contextually rich captions for images and videos is essential for various applications, from assistive technology to content recommendation. However, challenges such as maintaining temporal coherence in videos, reducing noise in large-scale datasets, and enabling real-time captioning remain significant. We introduce MIRA-CAP (Memory-Integrated Retrieval-Augmented Captioning), a novel framework designed to address these issues through three core innovations: a cross-modal memory bank, adaptive dataset pruning, and a streaming decoder.

View Article and Find Full Text PDF

Numerical study of the effects of minor structures and mean velocity fields in the cerebrospinal fluid flow.

Fluids Barriers CNS

December 2024

School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, 47907, IN, USA.

The importance of optimizing intrathecal drug delivery is highlighted by its potential to improve patient health outcomes. Findings from previous computational studies, based on an individual or a small group, may not be applicable to the wider population due to substantial geometric variability. Our study aims to circumvent this problem by evaluating an individual's cycle-averaged Lagrangian velocity field based on the geometry of their spinal subarachnoid space.

View Article and Find Full Text PDF

Background And Objectives: Acoustofluidic manipulation of particles and biological cells has been widely applied in various biomedical and engineering applications, including effective separation of cancer cell, point-of-care diagnosis, and cell patterning for tissue engineering. It is often implemented within a polydimethylsiloxane (PDMS) microchannel, where standing surface acoustic waves (SSAW) are generated by sending two counter-propagating ultrasonic waves on a piezoelectric substrate.

Methods: In this paper, we develop a full cross-sectional model of the acoustofluidic device using finite element method, simulating the wave excitation on the substrate and wave propagation in both the fluid and the microchannel wall.

View Article and Find Full Text PDF

Remotely extinguishing flames through transient acoustic streaming using time reversal focusing of sound.

Sci Rep

December 2024

Acoustics Research Group, Department of Physics and Astronomy, Brigham Young University, Provo, 84602, USA.

Acoustic waves are a possible reusable method to extinguish flames. Previous studies have placed the sound source near the flame or have used standing waves to reach large enough acoustic amplitudes to extinguish it. In this study, a new method is explored: using time reversal in a room to focus transient acoustic waves to the flame to extinguish it.

View Article and Find Full Text PDF

Visualization and Analyses of Cytoplasmic Streaming in C. elegans Zygotes.

Methods Mol Biol

December 2024

Division of Developmental Physiology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan.

Cytoplasmic streaming is the bulk flow of cytoplasm observed, not only in plants but also in animal oocytes and embryos. The flow of viscous fluid within the cytoplasm generates forces that re-arrange intracellular organelles, such as mitotic spindles and nuclei, to regulate cell growth, migration, and polarity. Cytoplasmic streaming is established by motor proteins and the viscoelastic cytoskeleton, including the actin filaments and microtubules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!