The origin and dispersal history of the large butterfly subfamily Nymphalinae are not fully understood, due to internal phylogenetic and time calibration issues. We conducted phylogenetic and dating analyses using mitochondrial and nuclear genes of biogeographically diverse groups of the Nymphalinae in order to resolve some controversial relationships and the paleobiogeographic pattern of the subfamily. Our results support the sister relationship of Vanessa (Tribe Nymphalini) and the Nymphalis-group, and the grouping of the three old-world genera (Rhinopalpa, Kallimoides and Vanessula) within Tribe Victorinini. Molecular dating analyses invoking two additional calibrations under the butterfly-host plant coevolutionary scenarios result in a relatively deeper divergence of the subfamily's two major clades (Nymphalini and the Kallimoids), compatible with the Cretaceous floral turnover scenario during the so-called Cretaceous Terrestrial Revolution. Phylobiogeographic analyses reveal that the Oriental region is probably the center of early divergences for Nymphalinae after the Cretaceous-Paleogene (K-Pg) mass extinction, followed by repeated dispersals into the rest of the Old World and the New World during various periods beginning in Eocene. The biogeographic history indicates that temperature changes and host-plant diversification may have facilitated the dispersals of this butterfly subfamily, with accelerated global colonization during the middle to late Miocene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562872 | PMC |
http://dx.doi.org/10.1038/s41598-017-08993-w | DOI Listing |
Taxon Rep Int Lepid Surv
October 2023
Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9050, USA.
Genomic sequencing of worldwide butterfly fauna followed by phylogenetic analysis of protein-coding genes informs butterfly classification throughout the taxonomic hierarchy, from families to species. As a rule, we attribute the same taxonomic rank to more prominent clades of comparable divergence (i.e.
View Article and Find Full Text PDFZootaxa
July 2024
Museo de Zoología (Entomología); Departamento de Biología Evolutiva; Facultad de Ciencias; Universidad Nacional Autónoma de México; 04510 Mexico City; Mexico.
Mitochondrial DNA B Resour
November 2024
Department of Biological Sciences, University of Manitoba, Winnipeg, Canada.
Genomics
November 2024
College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China. Electronic address:
Gigascience
January 2024
Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
Background: The Papilionoideae subfamily contains a large amount of underutilized legume crops, which are important for food security and human sustainability. However, the lack of genomic resources has hindered the breeding and utilization of these crops.
Results: Here, we present chromosome-level reference genomes for 5 underutilized diploid Papilionoideae crops: sword bean (Canavalia gladiata), scarlet runner bean (Phaseolus coccineus), winged bean (Psophocarpus tetragonolobus), smooth rattlebox (Crotalaria pallida), and butterfly pea (Clitoria ternatea), with assembled genome sizes of 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!