Dextrans synthesised by three Leuconostoc mesenteroides strains, isolated from mammalian milks, were studied and compared with dextrans produced by Lc. mesenteroides and Lactobacillus sakei strains isolated from meat products. Size exclusion chromatography coupled with multiangle laser light scattering detection analysis demonstrated that the dextrans have molecular masses between 1.74×10Da and 4.41×10Da. Rheological analysis of aqueous solutions of the polymer revealed that all had a pseudoplastic behaviour under shear conditions and a random, and flexible, coil structure. The dextrans showed at shear zero a difference in viscosity, which increased as the concentration increased. Also, the purified dextrans were able to immunomodulate in vitro human macrophages, partially counteracting the inflammatory effect of Escherichia coli O111:B4 lipopolysaccharide. During prolonged incubation on a solid medium containing sucrose, dextran-producing bacteria showed two distinct phenotypes not related to the genus or species to which they belonged. Colonies of Lc. mesenteroides CM9 from milk and Lb. sakei MN1 from meat formed stable and compact mucoid colonies, whereas the colonies of the other three Leuconostoc strains became diffuse after 72h. This differential behaviour was also observed in the ability of the corresponding strains to bind to Caco-2 cells. Strains forming compact mucoid colonies showed a high level of adhesion when grown in the presence of glucose, which decreased in the presence of sucrose (the condition required for dextran synthesis). However no influence of the carbon source was detected for the adhesion ability of the other Lc. mesenteroides strains, which showed variable levels of binding to the enterocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2017.06.113 | DOI Listing |
Cell Death Discov
January 2025
Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
Intestinal fibrosis, as a late-stage complication of inflammatory bowel disease (IBD), leads to bowel obstruction and requires surgical intervention, significantly lowering the quality of life of affected patients. SAA3, a highly conserved member of the serum amyloid A (SAA) apolipoprotein family in mice, is synthesized primarily as an acute phase reactant in response to infection, inflammation and trauma. An increasing number of evidence suggests that SAA3 exerts a vital role in the fibrotic process, even though the underlying mechanisms are not yet fully comprehended.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Chemistry, Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA. Electronic address:
Combining polysaccharides with polypeptides enables growth of diverse nanostructures with minimal toxicity, low immune response, and potential biodegradability. However, examples of nanostructures combining polysaccharides with polypeptides are limited due to synthetic difficulties and related issues of solubility, purification, and characterization, with previous reports of polysaccharide-block-polypeptide block copolymers requiring methods such as polymer-polymer coupling and post-polymerization modifications paired with difficult purification steps. Here, we synthesized dextran-block-poly(benzyl glutamate) block copolymers in water via polymerization-induced self-assembly (PISA) to form nanostructures in situ, studying their morphologies using experimental methods and molecular modeling.
View Article and Find Full Text PDFJ Drug Deliv Sci Technol
February 2025
Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881 USA.
Macrophages are an integral part of the innate immune system and act as a first line of defense to pathogens; however, macrophages can be reservoirs for pathogens to hide and replicate. Tuberculosis, influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are common diseases whose pathogens are uptaken into macrophages. Current treatments for diseases such as these are limited by the therapeutic delivery method, which typically involves systemic delivery in large, frequent doses.
View Article and Find Full Text PDFCrit Rev Oncog
January 2025
Plant Pathology and Microbiology Laboratory, Regional Plant Resource Centre, Bhubaneswar, India.
Bacteria, fungi, and algae are examples of microorganisms that synthesize polysaccharides, which are macromolecules that belong to the carbohydrate class. Production of polysaccharides represents an alternative to chemical and plant-derived compounds that could be used for human well-being which requires implementation of different methods standardized during the extraction and purification process. In the current investigation, Pseudolagarobasidium acaciicola, a novel fungal source of exopolysaccharide (EPS) was used which produced 2773.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Chamilpa, Cuernavaca, Mor., Mexico. Electronic address:
Glucansucrase Dsr_Wcp3a from a Weissella confusa strain discovered in fermented maize (pozol) was produced in E. coli BL21 resulting in three truncated forms of the native enzyme. An important modification of specificity is observed, as the truncated enzymes synthesize low molecular weight dextran from sucrose, probably due to the absence of domains IV and V, compared to the native enzyme which produces high molecular weight dextran.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!