The present contribution aims at describing the fabrication of coacervates in the nano-size range starting from a 1-deoxylactit-1-yl chitosan (in this manuscript termed as CTL60) and the multivalent anion tripolyphosphate (TPP). Colloidal coacervates have been obtained for precise values of the molar ratio of TPP to CTL60 repeating unit. Coacervation is ensured only at pH 4.5 and not at 7.4, thus demonstrating the key role of electrostatic interactions in the stabilization of the coacervates. At a variance with chitosan, CTL60 favors the formation of highly homogeneous coacervates with very low values of the polydispersity index (PDI). Moreover, CTL60 coacervates can be freeze-dried without any cryoprotectant, they can host a model molecule and are stable up to three weeks at 4°C. Conversely, such coacervates dissolve upon increasing pH and ionic strength. By considering the bioactive polycation CTL60, the present system can be suggested as a first step in the development of innovative biologically-active nano-carriers to be used as drug delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2017.06.097DOI Listing

Publication Analysis

Top Keywords

colloidal coacervates
8
coacervates
7
ctl60
5
highly monodisperse
4
monodisperse colloidal
4
coacervates based
4
based bioactive
4
bioactive lactose-modified
4
lactose-modified chitosan
4
chitosan synthesis
4

Similar Publications

Article Synopsis
  • A biocompatible polyelectrolyte complex (PEC) was created using Tragacanth gum (TG) and chitosan (CS) to explore its potential biological applications, with an optimized TG:CS ratio of 18:2 identified through various tests.
  • The study found that at pH 4, TG and CS showed strong interactions, highlighting charge neutralization in the PECs, which featured a unique macroporous structure.
  • The PEC cryogel demonstrated significant antibacterial activity against E. coli and S. aureus, while also promoting wound healing in human fibroblast cells without any toxic effects.
View Article and Find Full Text PDF

Construction of multifunctional hydrogel containing pH-responsive gold nanozyme for bacteria-infected wound healing.

Int J Biol Macromol

December 2024

School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China. Electronic address:

Nanozymes have become promising alternative antibacterial agents for bacteria-infected wounds. In this study, fucoidan-confined gold nanoparticles (Fuc@AuNPs) are developed by in situ reduction, and stabilized by sulfate groups of fucoidan. Fuc@AuNPs exhibit pH-responsive catalytic activity that can mimic oxidase (OXD) under acidic bacterial infection conditions and mimic superoxide dismutase (SOD) under normal physiological conditions.

View Article and Find Full Text PDF

Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration.

Biomaterials

April 2025

Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea; Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea. Electronic address:

The field of bone tissue engineering is vital due to increasing bone disorders and limitations of traditional grafts. Injectable hydrogels offer minimally invasive solutions but often lack mechanical integrity and biological functionality, including osteoinductive capacity and structural stability under physiological conditions. To address these issues, we propose a coacervate-based injectable adhesive hydrogel that utilizes the dual functionality of in situ photocrosslinking and osteoinductive amorphous calcium phosphate formation, both of which are activated simultaneously by visible light irradiation.

View Article and Find Full Text PDF

Preparation, characterization and mechanism of SiO@SiO core-shell microspheres through polymerization-induced colloid aggregation for fast separation using ultra performance liquid chromatography.

Talanta

February 2025

Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Institute of Modern Separation Science, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemstry & Materials Science, Northwest University, Xi'an, 710127, China. Electronic address:

The polymerization-induced colloid aggregation (PICA) method is commonly used to create SiO@SiO core-shell silica microspheres (CSSMs), but it often encounters challenges such as incomplete shell coating and poor reproducibility. In this paper, the formation mechanism of the silica shell layer during the preparation of SiO@SiO CSSMs using the PICA method was investigated. It was found that ureido modification can reduce the Zeta potential of the silica core surface, facilitating the deposition of coacervates formed by urea-formaldehyde resin (UF) and silica nanoparticles on the silica core surface to form the SiO shell layer when the Zeta potential of the surface is in the range of -20.

View Article and Find Full Text PDF

Protein molecules such as soy protein isolate (SPI) and egg white (EW) are highly promising materials for developing hydrogels (especially micro/nanogels) for the encapsulation, protection and controlled release of bioactive substances. However, there are limited numbers of studies on the formulation and behavior of these two gelling materials as microgels. In our study, composite microgels of SPI and EW at various component ratios and pH conditions have been successfully prepared; the rheological behavior and structural properties of these composite microgels before, during and after digestion have been analyzed; and their performance in curcumin encapsulation and gastrointestinal delivery has also been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!