A concept for direct surface modification on self-standing films of cellulose nanofibrils (CNF) is demonstrated using an aminosilane group in cellulose compatible solvent (dimethyl acetamide, DMA). The chemically modified structure efficiently prevents the oxygen molecules from interacting with the nanocellulose film in the presence of water molecules. Oxygen permeability values lower than 1mLmmmdayatm were achieved at extremely high levels of relative humidity (RH95%). The aminosilane reaction is compared to conventional hydrophobization reaction using hexamethyldisilazane. The differences with respect to interactions between cellulosic nanofibrils, water and oxygen molecules taking place with aminated and silylated CNF films correlated with the degree of surface substitution, surface hydrophilicity and permeability of the formed layer. The self-condensation reactions taking place on the film surface during aminosilane-mediated bonding were decisive for low oxygen permeability. Experimental evidence on the importance of interfacial processes that hinder the water-cellulose interactions while keeping film's low affinity towards oxygen is demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2017.06.066DOI Listing

Publication Analysis

Top Keywords

oxygen molecules
8
oxygen permeability
8
oxygen
6
surface
5
understanding mechanisms
4
mechanisms oxygen
4
oxygen diffusion
4
diffusion surface
4
surface functionalized
4
functionalized nanocellulose
4

Similar Publications

Plant pathogens pose significant threats to global cereal crop production, particularly for essential crops like rice and wheat, which are fundamental to global food security and provide nearly 40% of the global caloric intake. As the global population continues to rise, increasing agricultural production to meet food demands becomes even more critical. However, the production of these vital crops is constantly threatened by phytopathological diseases, especially those caused by fungal pathogens such as , the causative agent of rice blast disease, , responsible for head blight (FHB) in wheat, and , the source of Septoria tritici blotch (STB).

View Article and Find Full Text PDF

3d-5d Orbital Hybridization in Nanoflower-Like High-Entropy Alloy for Highly Efficient Overall Water Splitting at High Current Density.

Small

January 2025

Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China.

Exploring highlyefficient electrocatalysts for overall water splitting is a challenging butnecessary task for development of green and renewable energy. Herein, PtIrFeCoNi high-entropy alloy nanoflowers (HEA NFs) withstrong 3d-5d orbital hybridization were fabricated to achieve highly efficientoverall water splitting at high current density. The PtIrFeCoNi HEA NFs achieved a 57.

View Article and Find Full Text PDF

The urea oxidation reaction (UOR) is characterized by a lower overpotential compared to the oxygen evolution reaction (OER) during electrolysis, which facilitates the hydrogen evolution reaction (HER) at the cathode. Charge distribution, which can be modulated by the introduction of a heterostructure, plays a key role in enhancing the adsorption and cleavage of chemical groups within urea molecules. Herein, a facile all-room temperature synthesis of functional heterojunction NiCoS/CoMoS grown on carbon cloth (CC) is presented, and the as-prepared electrode served as a catalyst for simultaneous hydrogen evolution and urea oxidation reaction.

View Article and Find Full Text PDF

Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.

View Article and Find Full Text PDF

The physical separation of CH from CO on metal-organic frameworks (MOFs) has received a substantial amount of research interest due to its advantages of simplicity, security, and energy efficiency. However, the exploitation of ideal MOF adsorbents for CH/CO separation remains a challenging task due to their similar physical properties and molecular sizes. Herein, we report a unique CH nano-trap constructed using accessible oxygen and nitrogen sites, which exhibits energetic favorability toward CH molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!