A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of moderate electric fields in the properties of starch and chitosan films reinforced with microcrystalline cellulose. | LitMetric

Microcrystalline cellulose (MCC) can provide improved properties when the aim is the development of biodegradable packaging materials. In this work the physicochemical properties of polysaccharide-based films (chitosan and starch) with the incorporation of MCC and the application of moderate electric field (MEF) and ultrasonic bath (UB) as treatments, were evaluated. For each treatment, the thickness, moisture content, solubility, water vapor permeability, contact angle, mechanical properties, along with its color and opacity were determined. The surface morphologies of the films were assessed by scanning electron microscopy (SEM). X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA) were also performed. It was observed that the addition of different concentrations of MCC as well as the application of MEF are responsible for changes in the properties of the films, being this effect dependent on the polysaccharide used. Chitosan-based films were slightly yellow, transparent and presented a more homogeneous structure. The use of MEF was efficient in decreasing the permeability to water vapor in chitosan based films without MCC, as well as in production of films with a more hydrophobic surface. The addition of MCC promoted more opaque, rigid, less flexible and less hydrophobic films. Starch-based films were whitish, with a more heterogeneous structure and the application of MEF generated more hydrophilic films with lower tensile strength and Young's modulus. The films with MCC were more opaque, less flexible and less hydrophilic than the films without MCC. The composites presented good thermal properties, which increases their applicability as packaging materials. Therefore, the incorporation of MCC into polysaccharide-based films as well as the application of MEF can be an approach to change the properties of films.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2017.07.007DOI Listing

Publication Analysis

Top Keywords

films
14
application mef
12
films mcc
12
moderate electric
8
microcrystalline cellulose
8
mcc
8
packaging materials
8
polysaccharide-based films
8
incorporation mcc
8
water vapor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!