A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characteristics of a free-standing film from banana pseudostem nanocellulose generated from TEMPO-mediated oxidation. | LitMetric

Characteristics of a free-standing film from banana pseudostem nanocellulose generated from TEMPO-mediated oxidation.

Carbohydr Polym

ARC Training Centre for Advanced Technologies in Food Manufacture, School of Chemical Engineering, UNSW, Sydney 2052, Australia. Electronic address:

Published: October 2017

Demand for bioplastic, especially for food packaging, increases as the consumers become more aware of the destructive effect of non-biodegradable plastics. Nanocellulose from banana pseudo-stem has great potential to be formed as a bioplastic. This study aimed to characterize the free-standing film produced from banana pseudo-stem nanocellulose that was prepared by TEMPO-mediated oxidation. The film was found containing calcium oxalate crystals, which most likely influenced the film transparency and possibly affected the contact angle and tensile strength. The film had initial degradation temperature at 205°C, the contact angle of 64.3°, the tensile strength of 59.5MPa, and elongation of 1.7%. This initial characterization of free-standing nanocellulose film showed a promising potential of TEMPO-treated nanocellulose from banana pseudo-stem as a source of bioplastic. This study could also be beneficial information for further possible modification to improve the banana pseudo-stem film properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2017.07.025DOI Listing

Publication Analysis

Top Keywords

banana pseudo-stem
16
free-standing film
8
tempo-mediated oxidation
8
nanocellulose banana
8
bioplastic study
8
contact angle
8
tensile strength
8
film
7
banana
5
nanocellulose
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!