Biomarkers based on the molecular mechanism of sepsis are important for timely diagnosis and treatment. A large panel of small non-coding microRNAs was reported to modulate the immune response in sepsis but have not been tested in clinical practice. Large-scale identification of microRNA networks in sepsis might reveal a new biological mechanism that can be also targeted by gene therapy. Therefore, the main objective of this study is to perform a comparison of the miRNA network between septic patients and healthy controls. We used the previously measured levels of expression of 16 different circulating human and viral microRNAs in plasma from 99 septic patients and 53 healthy controls. We used three different computational methods to find correlations between the expressions of microRNAs and to build microRNA networks for the two categories, septic patients and healthy controls. We found that the microRNA network of the septic patients is significantly less connected when compared to miRNA network of the healthy controls (21 edges vs 52 edges, P < 0.0001). We hypothesize that several microRNAs (miR-16, miR-29a, miR-146, miR-155, and miR-182) are being sponged in sepsis explaining the loss of connection in the septic patient miRNA network. This was specific for sepsis, as it did not occur in other conditions characterized by an increased inflammatory response such as in post-surgery patients. Using several target prediction instruments, we predicted potential common sponges for the miRNA network in sepsis from several signaling pathways. Understanding the dynamics of miRNA network in sepsis is useful to explain the molecular pathophysiology of sepsis and for designing therapeutic strategies that target essential components of the immune response pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562310 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183334 | PLOS |
Sci Rep
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.
View Article and Find Full Text PDFGene
January 2025
Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi 832002 China; Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524000 Guangdong, China. Electronic address:
Background: In-stent restenosis (ISR) is one of the most significant complications following percutaneous coronary intervention (PCI) in patients with coronary artery disease (CAD). Ferroptosis is a novel cell death mode characterized by iron overload and lipid peroxidation. However, the role of ferroptosis in vascular smooth muscle cells (VSMCs) regulating neointimal formation during restenosis remains unclear.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, 213000, Changzhou, Jiangsu Province, China.
Background: Previous research has established that chronic kidney disease (CKD) and heart failure with preserved ejection fraction (HFpEF) often coexist. Although we have a preliminary understanding of the potential correlation between HFpEF and CKD, the underlying pathophysiological mechanisms remain unclear. This study aimed to elucidate the molecular mechanisms associated with CKD and HFpEF through bioinformatics analysis.
View Article and Find Full Text PDFBurns
January 2025
Dermatology Hospital, Southern Medical University, Guangzhou, China. Electronic address:
Background: Keloid is a benign skin tumor that result from abnormal wound healing and excessive collagen deposition. The pathogenesis is believed to be linked to genetic predisposition and immune imbalance, although the precise mechanisms remain poorly understood. Current therapeutic approaches may not consistently yield satisfactory outcomes and are often accompanied by potential side effects and risks.
View Article and Find Full Text PDFBraz J Otorhinolaryngol
January 2025
Tibet University, Medical College, Lhasa, China. Electronic address:
Objective: High altitude hypobaric hypoxia can induce hearing impairment and hearing acclimatization, but few studies have been performed to decipher the potential transition between the two states. To decipher transition-related circular RNAs (circRNAs)-microRNAs (miRNAs)-messenger RNA (mRNAs) regulatory network.
Methods: Wistar rats were airlifted from plain to high altitude and maintained for 30 days and 60 days.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!