Tree Alignment Based on Needleman-Wunsch Algorithm for Sensor Selection in Smart Homes.

Sensors (Basel)

Faculty of Computing and Informatics, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia.

Published: August 2017

Activity recognition in smart homes aims to infer the particular activities of the inhabitant, the aim being to monitor their activities and identify any abnormalities, especially for those living alone. In order for a smart home to support its inhabitant, the recognition system needs to learn from observations acquired through sensors. One question that often arises is which sensors are useful and how many sensors are required to accurately recognise the inhabitant's activities? Many wrapper methods have been proposed and remain one of the popular evaluators for sensor selection due to its superior accuracy performance. However, they are prohibitively slow during the evaluation process and may run into the risk of overfitting due to the extent of the search. Motivated by this characteristic, this paper attempts to reduce the cost of the evaluation process and overfitting through tree alignment. The performance of our method is evaluated on two public datasets obtained in two distinct smart home environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579745PMC
http://dx.doi.org/10.3390/s17081902DOI Listing

Publication Analysis

Top Keywords

tree alignment
8
sensor selection
8
smart homes
8
evaluation process
8
alignment based
4
based needleman-wunsch
4
needleman-wunsch algorithm
4
algorithm sensor
4
smart
4
selection smart
4

Similar Publications

The Papilloma Virus Episteme (PaVE) https://pave.niaid.nih.

View Article and Find Full Text PDF

Groundwater is an essential freshwater source worldwide, but increasing pollution poses risks to its sustainability. This study applied a comprehensive approach to assess hydrogeochemical facies and groundwater quality in Odisha's large low-lying coastal regions. Analysis of 136 samples revealed that sodium (9.

View Article and Find Full Text PDF

Genomic Differences and Mutations in Epidemic Orf Virus and Vaccine Strains: Implications for Improving Orf Virus Vaccines.

Vet Sci

December 2024

Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan 528225, China.

Orf (ORF) is an acute disease caused by the Orf virus (ORFV), and poses a certain threat to animal and human health. Live attenuated vaccines play an important role in the prevention and control of ORF. The effectiveness of the live attenuated Orf virus vaccine is influenced by several factors, including the genomic match between the vaccine strain and circulating epidemic strains.

View Article and Find Full Text PDF

Based on the single nucleotide polymorphism (SNP) markers developed by whole genome resequencing (WGRS), the relationship and population genetic structure of 53 common apricot () varieties were analyzed to provide a theoretical basis for revealing the phylogenetic relationship and classification of the common apricot. WGRS was performed on 53 common apricot varieties, and high-quality SNP sites were obtained after alignment with the "" apricot genome as a reference. Phylogenetic analysis, G matrix analysis, principal component analysis, and population structure analysis were performed using Genome-wide Complex Trait Analysis (GCTA), FastTree, Admixture, and other software.

View Article and Find Full Text PDF

Independent evolution of oleate hydratase clades in Bacillales reflects molecular convergence.

Front Mol Biosci

December 2024

Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.

Oleate hydratase (OhyA), a flavoenzyme that catalyzes the hydration of unsaturated fatty acids, has been identified in various Bacillales organisms, including those in the , , , and genera. In this study, we combine structural biology with molecular and phylogenetic analyses to investigate the evolutionary dynamics of the OhyA protein family within the Bacillales order. Our evolutionary analysis reveals two distinct OhyA clades (clade I and clade II) within Bacillales that, while sharing catalytic function, exhibit significant genomic and structural differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!