Thermal treatment of oligopeptides is one of the methods for synthesis of organic nanostructures. However, heating may lead not only to self-assembly of the initial molecules, but also to chemical reactions resulting in the formation of new unexpected nanostructures or change in the properties of the existing ones. In the present work, the reaction of cyclization of dipeptide l-leucyl-l-leucine in solid state under heating was studied. The change in morphology of dipeptide thin film and formation of nanostructures after heating was visualized using atomic force microscopy. This method also was used for demonstration of differences in self-assembly of linear and cyclic dipeptides. The chemical structure of reaction product was characterized by NMR spectrometry, FTIR spectroscopy and GC-MS analysis. Kinetic parameters of cyclization were estimated within the approaches of the nonisothermal kinetics ("model-free" kinetics and linear regression methods for detection of topochemical equation). The results of present work are useful for explanation the changes in the properties of nanostructures based on short-chain oligopeptides, notably leucyl-leucine, after thermal treatment, as well as for the synthesis of cyclic oligopeptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.7b06759 | DOI Listing |
J Phys Chem B
September 2017
A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya ul. 18, Kazan, 420008 Russia.
Thermal treatment of oligopeptides is one of the methods for synthesis of organic nanostructures. However, heating may lead not only to self-assembly of the initial molecules, but also to chemical reactions resulting in the formation of new unexpected nanostructures or change in the properties of the existing ones. In the present work, the reaction of cyclization of dipeptide l-leucyl-l-leucine in solid state under heating was studied.
View Article and Find Full Text PDFPhys Chem Chem Phys
May 2017
A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya ul. 18, Kazan, 420008, Russia.
The non-zeolitic behavior of l-leucyl-l-leucine and its self-organization in solid state and from solutions with the formation of different nanostructures are reported. This dipeptide forms porous crystals, but does not exhibit molecular sieve effects typical of classical zeolites and biozeolites. The specific sorption properties of l-leucyl-l-leucine result from a change in its crystal packing from channel-type to layered-type, when binding strong proton acceptors or proton donors of molecular size greater than 18-20 cm mol.
View Article and Find Full Text PDFJ Pept Sci
April 2012
Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlevskaya ul. 18, Kazan 420008, Russia.
The ability of highly ordered tripeptide structures to keep or change their morphology in contact with organic vapors was studied. A thin film of tripeptide L-leucyl-L-leucyl-L-leucine (LLL) was prepared having microcrystals and nanocrystals on its surface, which are stable upon vacuum drying but become objects of selective morphology change after a contact with vapors of organic solvents. Fine separate LLL crystals and their agglomerates of submicron and larger dimensions were observed by atomic force microscopy and scanning electron microscopy.
View Article and Find Full Text PDFFungal Genet Biol
April 2006
Spanish-Portuguese Center of Agricultural Research (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental lab 208, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain.
The generation of a wide ESTs library and database from Trichoderma harzianum CECT 2413 was the base for identifying the gene ThPTR2, coding for a PTR family di/tri-peptide transporter. The deduced protein sequence of the ThPTR2 gene showed the conserved motifs and also the 12 transmembrane domains typical of the PTR transporters. The highest level of ThPTR2 expression was found when the fungus was grown in chitin as sole carbon source.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!