Capping Layer (CL) Induced Antidamping in CL/Py/β-W System (CL: Al, β-Ta, Cu, β-W).

ACS Appl Mater Interfaces

Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.

Published: September 2017

For achieving ultrafast switching speed and minimizing dissipation losses, the spin-based data storage device requires a control on effective damping (α) of nanomagnetic bits. Incorporation of interfacial antidamping spin orbit torque (SOT) in spintronic devices therefore has high prospects for enhancing their performance efficiency. Clear evidence of such an interfacial antidamping is found in Al capped Py(15 nm)/β-W(t)/Si (Py = NiFe and t = thickness of β-W), which is in contrast to the increase of α (i.e., damping) usually associated with spin pumping as seen in Py(15 nm)/β-W(t)/Si system. Because of spin pumping, the interfacial spin mixing conductance (g) at Py/β-W interface and spin diffusion length (λ) of β-W are found to be 1.63(±0.02) × 10 m (1.44(±0.02) × 10 m) and 1.42(±0.19) nm (1.00(±0.10) nm) for Py(15 nm)/β-W(t)/Si (β-W(t)/Py(15 nm)/Si) bilayer systems. Other different nonmagnetic capping layers (CL), namely, β-W(2 nm), Cu(2 nm), and β-Ta(2,3,4 nm) were also grown over the same Py(15 nm)/β-W(t). However, antidamping is seen only in β-Ta(2,3 nm)/Py(15 nm)/β-W(t)/Si. This decrease in α is attributed to the interfacial Rashba like SOT generated by nonequilibrium spin accumulation subsequent to the spin pumping. Contrary to this, when interlayer positions of Py(15 nm) and β-W(t) is interchanged irrespective of the fixed top nonmagnetic layer, an increase of α is observed, which is ascribed to spin pumping from Py to β-W layer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b06991DOI Listing

Publication Analysis

Top Keywords

spin pumping
16
py15 nm/β-wt/si
12
interfacial antidamping
8
spin
8
py15
5
capping layer
4
layer induced
4
antidamping
4
induced antidamping
4
antidamping cl/py/β-w
4

Similar Publications

High Mobility Emissive Organic Semiconductors for Optoelectronic Devices.

J Am Chem Soc

January 2025

Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.

High mobility emissive organic semiconductors (HMEOSCs) are a kind of unique semiconducting material that simultaneously integrates high charge carrier mobility and strong emission features, which are not only crucial for overcoming the performance bottlenecks of current organic optoelectronic devices but also important for constructing high-density integrated devices/circuits for potential smart display technologies and electrically pumped organic lasers. However, the development of HMEOSCs is facing great challenges due to the mutually exclusive requirements of molecular structures and packing modes between high charge carrier mobility and strong solid-state emission. Encouragingly, considerable advances on HMEOSCs have been made with continuous efforts, and the successful integration of these two properties within individual organic semiconductors currently presents a promising research direction in organic electronics.

View Article and Find Full Text PDF

The spin pumping effect in antiferromagnets, which ultimately converts THz waves into a spin current, is the key physical mechanism leading to an essential function which harnesses the THz technology and spintronics. Here, we report thorough experimental investigations of the spin current induced by the antiferromagnetic spin pumping effect in epitaxial α-Fe_{2}O_{3} thin films having two distinct dynamic modes and unambiguously show that both the inter- and intrasublattice spin mixing conductance are equally substantial. Our experimental insight is an important advance for understanding the physics of transduction between the spin current and the staggered magnetization dynamics at THz frequency.

View Article and Find Full Text PDF

Pump-probe response of the spin-orbit coupled Mott insulator Sr_{2}IrO_{4} reveals a rapid creation of low-energy optical weight and suppression of three-dimensional magnetic order on laser pumping. Postpump there is a quick reduction of the optical weight but a very slow recovery of the magnetic order-the difference is attributed to weak interlayer exchange in Sr_{2}IrO_{4} delaying the recovery of three-dimensional magnetic order. We suggest that the effect has a very different and more fundamental origin.

View Article and Find Full Text PDF

We consider turbulence of waves interacting weakly via four-wave scattering (sea waves, plasma waves, spin waves, etc.). In the first order in the interaction, a closed kinetic equation has stationary solutions describing turbulent cascades.

View Article and Find Full Text PDF

Chirality-induced spin selectivity (CISS) generates giant spin polarization in transport through chiral molecules, paving the way for novel spintronic devices and enantiomer separation. Unlike conventional transport, CISS magnetoresistance (MR) violates Onsager's reciprocal relation, exhibiting significant resistance changes when reversing electrode magnetization at zero bias. However, its underlying mechanism remains unresolved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!