A novel peptide blocking cancer cell invasion by structure-based drug design.

Biomed Rep

Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan.

Published: September 2017

The receptor for the urokinase-type plasminogen activator (uPA), uPAR, facilitates tumor cell invasion and metastasis by focusing on several ligands, including uPA, integrins and vitronectin. With computational prediction algorithms and structure-based drug design, we identified peptides containing the Gly-Lys-Gly-Glu-Gly-Glu-Gly-Lys-Gly sequence (peptide H1), which strongly interacts with uPAR. The aim of the present study was to investigate the effect of allosteric inhibition at the uPAR interface using a novel synthetic peptide and its function on ovarian cancer cell invasion. The molecular and functional mechanisms of H1 were determined by complementary biochemical and biological methods in the promyeloid U937 cell line as well as ovarian cancer cell lines, including serous carcinoma SKOV3 and clear cell carcinoma TOV21G. The effects of H1 treatment on cancer cell invasion were evaluated . H1 inhibited cancer cell invasion, without affecting cell viability, accompanied by the suppression of extracellular signal-regulated kinase (ERK)-1 phosphorylation and then matrix metalloproteinase (MMP)-9 expression. H1 failed to block the interaction of uPA-uPAR protein-protein interaction in cells, but antagonized the uPA function. H1 failed to disrupt the uPA-uPAR complex, but abolished the invasion of ovarian cancer cells at least through suppression of the ERK-MMP-9 signaling pathway. Further studies are needed to confirm our observations and to describe the underlying molecular mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547769PMC
http://dx.doi.org/10.3892/br.2017.957DOI Listing

Publication Analysis

Top Keywords

cancer cell
20
cell invasion
20
ovarian cancer
12
cell
9
structure-based drug
8
drug design
8
cancer
6
invasion
6
novel peptide
4
peptide blocking
4

Similar Publications

Objectives: Immune checkpoint inhibitors have revolutionized treatment of platinum-refractory advanced bladder cancer, offering hope where options are limited. Response varies, however, influenced by factors such as the tumor's immune microenvironment and prior therapy. Muscle-invasive bladder cancer (MIBC) is stratified into molecular subtypes, with distinct clinicopathologic features affecting prognosis and treatment.

View Article and Find Full Text PDF

Synthesis of complex, multiring, spirocyclic, 1,3-dicarbonyl fused, and highly functionalized 5-phenyl-1-azabicyclo[3.1.0]hexanes (ABCH) has been achieved by an intermolecular reaction of 2-(2'-ketoalkyl)-1,3-indandiones or α,γ-diketo esters with (1-azidovinyl)benzenes under transition metal-free conditions.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a major global health burden, being one of the most prevalent cancers with high mortality rates. Despite advances in conventional treatment modalities, patients with metastatic CRC often face limited options and poor outcomes. Chimeric antigen receptor-T (CAR-T) cell therapy, initially successful in hematologic malignancies, presents a promising avenue for treating solid tumors, including CRC.

View Article and Find Full Text PDF

Although basal cell carcinoma is the most common form of skin cancer, the superficial subtype is rarely seen on the upper eyelid. We report the case of a 71-year-old woman with a 4-year history of upper eyelid pruritus, initially diagnosed as blepharitis and unsuccessfully treated with various medications, including topical and systemic corticosteroids, topical immunomodulators, and antihistamines. The unusual presentation, location, histologic subtype, and persistent pruritus posed a significant diagnostic challenge in this case.

View Article and Find Full Text PDF

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!