Chemical Control and Spectral Fingerprints of Electronic Coupling in Carbon Nanostructures.

J Phys Chem C Nanomater Interfaces

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.

Published: December 2016

The optical and electronic properties of atomically thin materials such as single-walled carbon nanotubes and graphene are sensitively influenced by substrates, the degree of aggregation, and the chemical environment. However, it has been experimentally challenging to determine the origin and quantify these effects. Here we use time-dependent density-functional-theory calculations to simulate these properties for well-defined molecular systems. We investigate a series of core-shell structures containing C enclosed in progressively larger carbon shells and their perhydrogenated or perfluorinated derivatives. Our calculations reveal strong electronic coupling effects that depend sensitively on the interparticle distance and on the surface chemistry. In many of these systems we predict considerable orbital mixing and charge transfer between the C core and the enclosing shell. We predict that chemical functionalization of the shell can modulate the electronic coupling to the point where the core and shell are completely decoupled into two electronically independent chemical systems. Additionally, we predict that the C core will oscillate within the confining shell, at a frequency directly related to the strength of the electronic coupling. This low-frequency motion should be experimentally detectable in the IR region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5555747PMC
http://dx.doi.org/10.1021/acs.jpcc.6b09612DOI Listing

Publication Analysis

Top Keywords

electronic coupling
16
electronic
5
chemical
4
chemical control
4
control spectral
4
spectral fingerprints
4
fingerprints electronic
4
coupling
4
coupling carbon
4
carbon nanostructures
4

Similar Publications

Functionalized Terthiophene as an Ambipolar Redox System: Structure, Spectroscopy, and Switchable Proton-Coupled Electron Transfer.

J Am Chem Soc

January 2025

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.

Organic redox systems that can undergo oxidative and reductive (ambipolar) electron transfer are elusive yet attractive for applications across synthetic chemistry and energy science. Specifically, the use of ambipolar redox systems in proton-coupled electron transfer (PCET) reactions is largely unexplored but could enable "switchable" reactivity wherein the uptake and release of hydrogen atoms are controlled using a redox stimulus. Here, we describe the synthesis and characterization of an ambipolar functionalized terthiophene (TTH) bearing methyl thioether and phosphine oxide groups that exhibits switchable PCET reactivity.

View Article and Find Full Text PDF

Quasiperiodic Pairing in Graphene Quasicrystals.

Nano Lett

January 2025

Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea.

We investigate the superconducting instabilities of twisted bilayer graphene quasicrystals (TBGQCs) obtained by stacking two monolayer graphene sheets with 30° relative twisting. The electronic energy spectrum of the TBGQC contains periodic energy ranges (PERs) and quasiperiodic energy ranges (QERs), where the underlying local density of states (LDOS) exhibits periodic and quasiperiodic distribution, respectively. We found that superconductivity in the PER is a simple superposition of two monolayer superconductors.

View Article and Find Full Text PDF

Solvent influence on the optical absorption, frontier molecular orbitals, and electronic structure of 1-bromo adamantane.

J Mol Model

January 2025

Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, People's Republic of China.

Context: The study of the influence of solvent on 1-bromo adamantane (BAD) exposes prominent solvatochromatic shifts in the optical absorbance and substantial solvent effects on the electronic structure. This facilitates the molecular probe abilities for the BAD with respect to the surrounding environments such as dielectric constant and polarity. BAD exhibits positive solvatochromism for nonpolar solvents and negative solvatochromatic shifts for polar and aromatic solvents.

View Article and Find Full Text PDF

Aberrant Structural-Functional Coupling of Large-scale Brain Networks in Older Women with Subthreshold Depression.

J Gerontol B Psychol Sci Soc Sci

January 2025

Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China.

Objectives: Subthreshold depression (SD) is common in the older population, more so in females than males, and can lead to serious physical and mental ill-health. However, the underlying neurobiology remains unclear. This study used multimodal magnetic resonance imaging (MRI) to investigate the topological organization and coupling of the structural and functional brain networks in older women with SD.

View Article and Find Full Text PDF

Design Criteria for Active and Selective Catalysts in the Nitrogen Oxidation Reaction.

ACS Phys Chem Au

January 2025

University of Duisburg-Essen, Faculty of Chemistry, Theoretical Catalysis and Electrochemistry, Universitätsstraße 5, Essen 45141, Germany.

The direct conversion of dinitrogen to nitrate is a dream reaction to combine the Haber-Bosch and Ostwald processes as well as steam reforming using electrochemistry in a single process. Regrettably, the corresponding nitrogen oxidation (NOR) reaction is hampered by a selectivity problem, since the oxygen evolution reaction (OER) is both thermodynamically and kinetically favored in the same potential range. This opens the search for the identification of active and selective NOR catalysts to enable nitrate production under anodic reaction conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!