Electrochemiluminescence (ECL) refers to light emission induced by an electrochemical redox reaction. The stability, emission response, and light intensity of the ECL device are known to be improved by using an alternating current (AC) voltage. In this paper, an AC-driven ECL device is fabricated with DNA/Ru(bpy) hybrid film-modified electrode. The Ru(bpy) complex exhibits significant electrochemical reactivity in the DNA/Ru(bpy) hybrid film prepared by electrochemical adsorption. The hybrid film contains unique micrometre-scale aggregates of Ru(bpy) in DNA matrix. The physicochemical properties of the hybrid film and its AC-driven ECL characteristics in the electrochemical device are studied. Orange-coloured ECL is observed to be emitted from only the aggregated structures in the hybrid film at the high AC frequency of 10 kHz, which corresponds to a response time shorter than 100 μs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561079 | PMC |
http://dx.doi.org/10.1038/s41598-017-09123-2 | DOI Listing |
Mater Horiz
January 2025
College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China.
A new photopolymerizable organic-inorganic (O-I) hybrid sol-gel material, AUP@SiO-184, has been synthesized and utilized as a gate dielectric in flexible organic thin-film transistors (OTFTs). The previously reported three-arm alkoxy-functionalized silane amphiphilic polymer has yielded stable O-I hybrid materials comprising uniformly dispersed nanoparticles in the sol state. In this study, a photosensitizer was introduced, facilitating curing effects under ultraviolet light.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
New types of metal-organic framework (MOF) materials have great potential in solving the current global dilemma on energy, environment, and medical care. Herein, based on two kinds of biomolecule-MOFs (Bio-MOFs) with favorable biocompatibility and degradation-reconstruction characteristics, we have established a self-powered muti-functional device to achieve an efficient and broad-spectrum environmental energy collection and biomedical applications. Combining Zn(II) and carnosine-based Zn-Car_MOF possessing a high piezoelectric response (d = 11.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.
Pyroptosis is a key mode of programmed cell death during the early stages following acute myocardial infarction (AMI), driving immune-inflammatory responses. Cardiac resident macrophages (CRMs) are the primary mediators of cardiac immunity, and they serve a dual role through their shaping of both myocardial injury and post-AMI myocardial repair. To appropriately regulate AMI-associated inflammation, HM4oRL is herein designed, an innovative bifunctional therapeutic nanoplatform capable of inhibiting cardiomyocyte pyroptosis while reprogramming inflammatory signaling.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.
In two-dimensional (2D) chiral metal-halide perovskites (MHPs), chiral organic spacers induce structural chirality and chiroptical properties in the metal-halide sublattice. This structural chirality enables reversible crystalline-glass phase transitions in (-NEA)PbBr, a prototypical chiral 2D MHP where NEA represents 1-(1-naphthyl)ethylammonium. Here, we investigate two distinct spherulite states of (-NEA)PbBr, exhibiting either radial-like or stripe-like banded patterns depending on the annealing conditions of the amorphous film.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Peking University, College of Chemistry and Molecular Engineering, Chengfu Road No.292, 100871, Beijing, CHINA.
Organic-inorganic hybrid perovskites have demonstrated great potential for flexible optoelectronic devices due to their superior optoelectronic properties and structural flexibility. However, mechanical deformation-induced cracks at the buried interface and delamination from the substrate severely constrain the optoelectronic performance and device lifespan. Here, we design a two-site bonding strategy aiming to reinforce the mechanical stability of the SnO2/perovskite interface and perovskite layer using a multifunctional organic salt, 4-(trifluoromethoxy)phenylhydrazine hydrochloride (TPH).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!