Paradigm of Biased PAR1 (Protease-Activated Receptor-1) Activation and Inhibition in Endothelial Cells Dissected by Phosphoproteomics.

Arterioscler Thromb Vasc Biol

From the Department Plasma Proteins (B.L.v.d.E., A.J.H., P.J.S., K.M., A.B.M., M.v.d.B.), Department of Research Facilities (F.P.J.v.A., A.B.M.), Sanquin Research, Amsterdam, The Netherlands; Tumour Microenvironment and Proteomics Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom (S.Z.); Tumour Microenvironment and Proteomics Laboratory, Institute of Cancer Sciences, University of Glasgow, United Kingdom (S.Z.); Department Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, The Netherlands (K.M., A.B.M.).

Published: October 2017

Objective: Thrombin is the key serine protease of the coagulation cascade and mediates cellular responses by activation of PARs (protease-activated receptors). The predominant thrombin receptor is PAR1, and in endothelial cells (ECs), thrombin dynamically regulates a plethora of phosphorylation events. However, it has remained unclear whether thrombin signaling is exclusively mediated through PAR1. Furthermore, mechanistic insight into activation and inhibition of PAR1-mediated EC signaling is lacking. In addition, signaling networks of biased PAR1 activation after differential cleavage of the PAR1 N terminus have remained an unresolved issue.

Approach And Results: Here, we used a quantitative phosphoproteomics approach to show that classical and peptide activation of PAR1 induce highly similar signaling, that low thrombin concentrations initiate only limited phosphoregulation, and that the PAR1 inhibitors vorapaxar and parmodulin-2 demonstrate distinct antagonistic properties. Subsequent analysis of the thrombin-regulated phosphosites in the presence of PAR1 inhibitors revealed that biased activation of PAR1 is not solely linked to a specific G-protein downstream of PAR1. In addition, we showed that only the canonical thrombin PAR1 tethered ligand induces extensive early phosphoregulation in ECs.

Conclusions: Our study provides detailed insight in the signaling mechanisms downstream of PAR1. Our data demonstrate that thrombin-induced EC phosphoregulation is mediated exclusively through PAR1, that thrombin and thrombin-tethered ligand peptide induce similar phosphoregulation, and that only canonical PAR1 cleavage by thrombin generates a tethered ligand that potently induces early signaling. Furthermore, platelet PAR1 inhibitors directly affect EC signaling, indicating that it will be a challenge to design a PAR1 antagonist that will target only those pathways responsible for tissue pathology.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.117.309926DOI Listing

Publication Analysis

Top Keywords

par1
16
par1 inhibitors
12
biased par1
8
activation inhibition
8
endothelial cells
8
thrombin
8
activation par1
8
downstream par1
8
tethered ligand
8
signaling
7

Similar Publications

Background: The most common cause of death in those with cystic fibrosis (CF) is respiratory failure due to bronchiectasis resulting from repeated cycles of respiratory infection and inflammation. Protease-activated receptor 1 (PAR1) is a cell surface receptor activated by serine proteases including neutrophil elastase, which is recognised as a potent modulator of inflammation. While PAR1 is known to play an important role in regulating inflammation, nothing is known about any potential role of this receptor in CF pathogenesis.

View Article and Find Full Text PDF

Plant architecture greatly contributes to grain yield, but the epigenetic regulation of plant architecture remains elusive. Here, we identified the maize (Zea mays L.) mutant plant architecture 1 (par1), which shows reduced plant height, shorter and narrower leaves, and larger leaf angles than the wild type.

View Article and Find Full Text PDF

Extended Live Imaging of Female Drosophila melanogaster Germline Stem Cell Niches.

J Vis Exp

December 2024

Departamento de Genética, Facultad de Biología, Universidad de Sevilla;

Article Synopsis
  • Live imaging techniques provide real-time analysis of dynamic cellular processes in organisms, specifically studying the Drosophila ovary for various developmental phenomena like cell division and differentiation.
  • A new extended ex vivo culture method has been developed for live imaging of female Drosophila germline stem cell (GSC) niches, allowing visualization of GSC asymmetric division and changes in spectrosome morphology.
  • A detailed protocol is presented for this ex vivo culture, making it easier to study GSCs with various fluorescent tags commonly used in Drosophila research.
View Article and Find Full Text PDF

USP34 regulates endothelial PAR1 mRNA transcript expression and cellular signaling.

Mol Biol Cell

December 2024

Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093.

Signaling by G protein-coupled receptors (GPCRs) is regulated by temporally distinct processes including receptor desensitization, internalization, and lysosomal sorting, and are tightly controlled by post-translational modifications. While the role of phosphorylation in regulating GPCR signaling is well studied and established, the mechanisms by which other post-translational modifications, such as ubiquitination, regulate GPCR signaling are not clearly defined. We hypothesize that GPCR ubiquitination and deubiquitination is critical for proper signaling and cellular responses.

View Article and Find Full Text PDF

Lung cancer is a fatal complication of idiopathic pulmonary fibrosis (IPF) with a poor prognosis. Current treatments are insufficient in improving the prognosis of lung cancer patients with comorbid idiopathic pulmonary fibrosis (IPF-LC). Senescent fibroblasts, as stromal cells in the tumor microenvironment, influence tumor progression via exosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!