The present investigation was designed to analyze the influence of Helium-Neon (He-Ne 632.8nm) laser irradiation on defense enzymes, proline content and in vitro responses of callus induction, shoot initiation and on plantlet regeneration potential of brinjal. The seeds of Mattu Gulla (Solanum melongena L.) were irradiated with 20, 25 and 30J/cm of He-Ne laser followed by surface sterilization and sprouted on Murashige and Skoog medium without plant growth regulators. The activity of defense enzymes, proline content and the organogenetic potential of hypocotyl, leaf and shoot tip explants were determined from thirty day old seedlings. During seed germination, most of the seedlings showed normal two cotyledons whereas small number of seedlings showed tricotyledonous at 20J/cm treatment and no other morphological abnormalities were observed during further growth and development. There was no substantial variation was noted in both β-1,3-glucanase and chitinase activity as well as proline content which proves the He-Ne laser irradiation does not causes any stresses for the plant. The in vitro culture of hypocotyl, leaf and shoot tip explants from laser irradiated seedlings showed differential responses as compared to un-irradiated control. The laser induced enhancement of callus induction, growth rate of callus tissues and shoot tip, percentage of responses of shoot and root initiation, days to shoot and root initiation, shoots formed per callus, number of roots per shoots, length of roots and nuclear DNA content of in vitro raised plants were evaluated. Among the tested laser doses (20, 25 and 30J/cm), 25J/cm showed significant biostimulatory effect over un-irradiated control seedlings. The present observations reveal and endorsed our earlier reports with substantial enhancement of in vitro and ex vitro by He-Ne laser irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2017.08.017 | DOI Listing |
Photoacoustics
February 2025
Dipartimento di Scienze di Base ed Applicate per l'Ingegneria, Sapienza Università di Roma, Rome 00161, Italy.
A compact and robust optical excitation photoacoustic sensor with a self-integrated laser module excitation and an optimized differential resonator was developed to achieve high sensitivity and full linear range detection of carbon dioxide (CO) based on dual modes of wavelength modulated photoacoustic spectroscopy (WMPAS) and resonant frequency tracking (RFT). The integrated laser module equipped with three lasers (a quantum cascade laser (QCL), a distributed feedback laser (DFB) and a He-Ne laser) working in a time-division multiplexing mode was used as an integrated set of spectroscopic sources for detection of the designated concentration levels of CO. With the absorption photoacoustic mode, the WMPAS detection with the QCL and DFB sources was capable of CO detection at concentrations below 20 %, yielding a noise equivalent concentration (NEC) as low as 240 ppt and a normalized noise equivalent absorption coefficient (NNEA) of 4.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Agricultural, Forest and Transport Machinery, University of Life Sciences in Lublin, Głęboka 28, 20-612, Lublin, Poland.
In this paper, we propose a high-precision dual-comb ranging (DCR) method for short-distance measurement, avoiding carrier-envelope-offset locking. Cross-polarization detection is introduced, which makes better use of the intrinsic coherence of interferogram pairs over a short distance. We analyze the noise in the DCR system and propose a carrier-wave phase difference (CPD) calculation algorithm based on centroid extraction.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
November 2024
Department of Dermatology, Guangzhou Dermatology Hospital (Guangzhou Institute of Dermatology), Guangzhou, Guangdong 510095, China. Electronic address:
Sci Rep
November 2024
Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo, 11757, Egypt.
The aqueous solution cast method was used to create the biodegradable polymer nanocomposite (PNC) films from a blend of poly (vinyl alcohol) PVA and poly (vinyl pyrrolidone) PVP (70/30 wt %) and FeO nanoparticles (NPs). These PNC films were characterized using X-ray diffraction, scanning electron microscopy SEM, Fourier transform infrared spectroscopy FTIR, and ultraviolet-visible spectroscopy. XRD and FTIR results indicate that Fe NPs interact with the host polymer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!