One-third of the world's population infected tuberculosis (TB), and more than 1 million deaths annually. The co-infection between the mainly pathogen Mycobacterium tuberculosis (MTB) and HIV, and the incidence of drug-resistant TB, multi-drug resistant TB, extensively drug-resistant TB as well as totally drug-resistant TB have further aggravated the mortality and spread of this disease. Thus, there is an urgent need to develop novel anti-TB agents against both drug-susceptible and drug-resistant TB. The wide spectrum of biological activities and successful utilization of pyrazole-containing drugs in clinic have inspired more and more attention towards this kind of heterocycles. Numerous of pyrazole-containing derivatives have been synthesized for searching new anti-TB agents, and some of them showed promising potency and may have novel mechanism of action. This review aims to outline the recent achievements in pyrazole-containing derivatives as anti-TB agents and their structure-activity relationship.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2017.07.059 | DOI Listing |
Bioorg Chem
December 2024
Pharmaceutical Chemistry Department, Collage of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, P.O. 77, 6th of October City, Giza, Egypt.
In the present work, a new series of ethyl pyrazole-containing compounds with side sulphonamide moiety was designed and synthesized. The new derivatives were divided into four groups based on the linker between the sulphonamide and pyridine ring attached to position 4 of the pyrazole ring and the substitution on the phenyl ring at position 3 of the same ring. The linker could be ethyl or propyl linkers.
View Article and Find Full Text PDFMolecules
July 2024
Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania.
Novel fluorescent pyrazole-containing boron (III) complexes were synthesized employing a one-pot three-component reaction of 3-hydroxy-1-phenyl-1-pyrazole-4-carbaldehyde, 2-aminobenzenecarboxylic acids, and boronic acids. The structures of the novel heterocyclic compounds were confirmed using H-, C-, N-, F-, and B-NMR, IR spectroscopy, HRMS, and single-crystal X-ray diffraction data. The photophysical properties of the obtained iminoboronates were investigated using spectroscopic techniques, such as UV-vis and fluorescence spectroscopies.
View Article and Find Full Text PDFPak J Pharm Sci
January 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
synthesis of a pyrazole containing compound was achieved by reacting phenyl hydrazine with (E)-2-((4-bromophenyl) diazinyl)-1-phenylbutane-1,3-dione to produce 4-((4-bromophenyl) diazinyl)-5-methyl-1,3-diphenyl-pyrazole and characterization using mass spectrometer, H NMR and C NMR. The pharmacological evaluation of the synthesized compound, denoted as (KA5), against Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027, Staphylococcus aureus ATCC 29213 and Clostridiums sporogeneses ATCC 19404, indicate that there is no promising antibacterial activity. However, KA5 shows a competitive anticancer activity (IC: 8.
View Article and Find Full Text PDFPharmaceuticals (Basel)
April 2024
Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy.
Protein kinase CK1δ (CK1δ) is a serine-threonine/kinase that modulates different physiological processes, including the cell cycle, DNA repair, and apoptosis. CK1δ overexpression, and the consequent hyperphosphorylation of specific proteins, can lead to sleep disorders, cancer, and neurodegenerative diseases. CK1δ inhibitors showed anticancer properties as well as neuroprotective effects in cellular and animal models of Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis.
View Article and Find Full Text PDFACS Omega
October 2023
CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India.
Multidrug-resistant fungal infections have become much more common in recent years, especially in immune-compromised patients. Therefore, researchers and pharmaceutical professionals have focused on the development of novel antifungal agents that can tackle the problem of resistance. In continuation to this, a novel series of pyrazole-bearing pyrido[2,3-]pyrimidine-2,4(1,3)-dione derivatives (-) have been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!