Estimating of hepatic fat amount using MRI proton density fat fraction in a real practice setting.

Medicine (Baltimore)

Department of Internal Medicine Department of Radiology Department of Biostatistical Consulting and Research Lab, School of Medicine, Hanyang University, Seoul, Republic of Korea.

Published: August 2017

The recently developed magnetic resonance imaging (MRI) proton density fat fraction (PDFF) allows measurement of the fat in all segments of hepatic tissue. However, it is time consuming and inconvenient to measure each segment repeatedly. Moreover, volume of each segment also should be adjusted with arithmetic mean of the selected segments when total amount of liver fat is estimated. Therefore, we try to develop a clinically-relevant and applicable method of estimating hepatic fat in PDFF image.A total of 164 adults were enrolled. We addressed the measurement frequency and segment selection to determine the optimal method of measuring intrahepatic fat. Total hepatic fat was estimated by the weighted mean of each segment reflecting their respective segmental volumes. We designed 2 models. In Model 1, we determined the segment order by which the mean was closest to the whole weighted mean. In Model 2, we determined the segment order by which the arithmetic mean of the selected segments was closest to the whole weighted mean.Fat fraction (FF) was most important risk factor of hepatic heterogeneity in multivariable analysis (β = 0.534, P < .001). In severe fatty liver (FF > 22.1%), intrahepatic fat variability was 2.47% (1.16-6.26%). The arithmetic mean total intrahepatic FF was 12.66%. But the weighted mean that applied to each segmental volume was 12.90%. In Model 1, arithmetic mean of segments 4 and 5 was closest to the total estimated hepatic fat amount. However, when we added segment 8, the mean of segments 4, 5, and 8 was significantly different from the estimated total hepatic fat amount (P = .0021). In Model 2, arithmetic mean of segments 4 and 5 was closest to the total estimated hepatic fat amount. There was a significant reduction in variability between segment 4 and segments 4 and 5 (P < .0001).Averaging the mean hepatic FF of segments 4 and 5 was the most reasonable method for estimating total intrahepatic fat in practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571698PMC
http://dx.doi.org/10.1097/MD.0000000000007778DOI Listing

Publication Analysis

Top Keywords

hepatic fat
24
fat amount
16
fat
12
segments closest
12
estimating hepatic
8
mri proton
8
proton density
8
density fat
8
fat fraction
8
segment
8

Similar Publications

Omentin-1 mitigates non-alcoholic fatty liver disease by preserving autophagy through AMPKα/mTOR signaling pathway.

Sci Rep

December 2024

Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.

Adipose tissue-derived adipokines facilitate inter-organ communication between adipose tissue and other organs. Omentin-1, an adipokine, has been implicated in the regulation of glucose and insulin metabolism. However, limited knowledge exists regarding the regulatory impact of endogenous omentin-1 on hepatic steatosis.

View Article and Find Full Text PDF

The garden dormouse (Eliomys quercinus) is a fat-storing mammal that undergoes annual periods of hibernation to mitigate the effects of food scarcity, low ambient temperatures, and reduced photoperiod that characterize winter. Like other hibernating species, this animal suppresses its metabolic rate by downregulating nonessential genes and processes in order to prolong available energy stores and limit waste accumulation throughout the season. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that bind to mRNA and mediate post-transcriptional suppression, making miRNA ideal for modulating widespread changes in gene expression, including global downregulation typified by metabolic rate depression.

View Article and Find Full Text PDF

35kDa SPECIFIC-SIZED HYALURONAN AMELIORATES HIGH-FAT DIET-INDUCED LIVER INJURY IN MURINE MODEL OF MODERATE OBESITY.

Matrix Biol

December 2024

Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH. Electronic address:

Obesity is a growing concern in the US and world-wide, associated with an increased risk for several cardiometabolic diseases, including metabolic associated steatotic liver disease (MASLD). Currently, therapeutic interventions to prevent and/or treat MASLD are limited, and research is needed to identify new therapeutic targets. The specific-sized 35kDa fragment of hyaluronan (HA35), has gut protective and anti-inflammatory properties and a previous pilot clinical study reported it is well tolerated in healthy individuals.

View Article and Find Full Text PDF

Aim: The goal of this study was to determine the role of histone deacetylase 9 (HDAC9) in the development of diet-induced metabolic dysfunction-associated steatohepatitis (MASH) and white adipose tissue (WAT) dysfunctions.

Methods: We fed male and female mice with global Hdac9 knockout (KO) and their wild-type (WT) littermates an obesogenic high-fat/high-sucrose/high-cholesterol (35%/34%/2%, w/w) diet for 20 weeks.

Results: Hdac9 deletion markedly inhibited body weight gain and liver steatosis with lower liver weight and triglyceride content than WT in male mice but not females.

View Article and Find Full Text PDF

Background/objectives: Low fasting blood lysosomal acid lipase (LAL) activity is associated with the pathogenesis of metabolic hepatic steatosis. We measured LAL activity in blood and plasma before and after an oral fat tolerance test (OFTT) in patients with metabolic-dysfunction-associated steatotic liver disease (MASLD).

Methods: Twenty-six controls and seventeen patients with MASLD but without diabetes were genotyped for the patatin-like phospholipase 3 (PNPLA3) rs738409 variant by RT-PCR and subjected to an OFTT, measuring LAL activity in blood and plasma with a fluorimetric method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!