An aerosol chemical speciation monitor (ACSM) was deployed to study the primary nonrefractory submicron particulate matter emissions from the burning of commercially available solid fuels (peat, coal, and wood) typically used in European domestic fuel stoves. Organic mass spectra (MS) from burning wood, peat, and coal were characterized and intercompared for factor analysis against ambient data. The reference profiles characterized in this study were used to estimate the contribution of solid fuel sources, along with oil combustion, to ambient pollution in Galway, Ireland using the multilinear engine (ME-2). During periods influenced by marine air masses, local source contribution had dominant impact and nonsea-spray primary organic emissions comprised 88% of total organic aerosol mass, with peat burning found to be the greatest contributor (39%), followed by oil (21%), coal (17%), and wood (11%). In contrast, the resolved oxygenated organic aerosol (OOA) dominated the aerosol composition in continental air masses, with contributions of 50%, compared to 12% in marine air masses. The source apportionment results suggest that the use of domestic solid fuels (peat, wood, and coal) for home heating is the major source of evening and night-time particulate pollution events despite their small use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.7b01926 | DOI Listing |
Thermogravimetry coupled with simultaneous evolved gas analysis by mass spectrometry was used for discerning organic compounds released during the thermal degradation of paint whose chemical compositions are not readily accessible. Thermogravimetric analyses up to 600°C revealed distinct degradation patterns under inert and oxidative conditions. Significant degradation of paint initiates at around 360°C and concludes at 500°C in a nitrogen atmosphere.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana, 47906, USA.
The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.
View Article and Find Full Text PDFEnviron Pollut
December 2024
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
A multiple-site filter-sampling observation study was conducted in a coastal industrial city (Rizhao, 35°10'59″N, 119°23'57″E) to understand the main components, formation mechanisms, and potential sources of particulate matter. The average (±σ) mass concentration of PM across all the sites was 42 (±27) μg/m, with high variability (6-202 μg/m). Water-soluble inorganic ions (WSIIs) were the major contributors (54%-60%) to PM with mean values for sulfate (13 μg/m), nitrate (6 μg/m), and ammonium (7 μg/m) (SNA).
View Article and Find Full Text PDFSci Total Environ
December 2024
School of Environment, Nanjing Normal University, Nanjing, China.
Isoprene serves an important part in plant defense against biotic and abiotic stresses, while also exerting a crucial influence on atmospheric photochemical processes and global climate change. The regional climate-chemistry-ecosystem model (RegCM-Chem-YIBs) was employed in the following study to estimate the biogenic isoprene emissions (BISP) in China during 2018-2020. The model explored the relative contributions of various stress factors such as drought, carbon dioxide (CO), and surface ozone (O) to isoprene emissions.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Amrita School for Sustainable Futures, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, Kerala, India.
The 'Third Pole', home to numerous glaciers, serves as vital water reserves for a significant portion of the Asian population and has garnered global attention within the context of climate change due to their highly vulnerable nature. While a general decline in global glacial extent has been observed in recent decades, the pronounced regional imbalances across the Third Pole present a perplexing anomaly. To assess the impact of glacier mass changes in the Gangotri basin, we conducted a comprehensive analysis using remote sensing data to estimate spatially resolved mass changes from 2000 to 2023.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!